【題目】我國南北朝時期的數(shù)學(xué)家祖暅提出體積的計算原理(祖暅原理):“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處所截得兩幾何體的截面積恒等,那么這兩個幾何體的體積相等.已知焦點在x軸上的雙曲線C的離心率e=,焦點到其漸近線的距離為2.直線y=0與y=2在第一象限內(nèi)與雙曲線C及其漸近線圍成如圖所示的圖形OABN,則它繞y軸旋轉(zhuǎn)一圈所得幾何體的體積為___________.
【答案】
【解析】
由題意得雙曲線方程為=1,y=2在第一象限內(nèi)與漸近線的交點N的坐標和與雙曲線
第一象限交點B的坐標,記y=2與y軸交于點M,由π|MB|2﹣π|MN|2=π,根據(jù)祖晅原理,
能求出它繞y軸旋轉(zhuǎn)一圈所得幾何體的體積.
由題得,所以a=1,b=2.
∴雙曲線方程為=1,
y=2在第一象限內(nèi)與漸近線y=2x的交點N的坐標為(,2),
y=2與雙曲線=1在第一象限交點B的坐標為(,2),
記y=2與y軸交于點M(0,2),A(1,0),
∵π|MB|2﹣π|MN|2==π,
根據(jù)祖晅原理,它繞y軸旋轉(zhuǎn)一圈所得幾何體的體積為=2π.
故答案為:2π.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月18日-27日,第七屆世界軍人運動會在湖北武漢舉辦,中國代表團共獲得133金64銀42銅,共239枚獎牌.為了調(diào)查各國參賽人員對主辦方的滿意程度,研究人員隨機抽取了500名參賽運動員進行調(diào)查,所得數(shù)據(jù)如下所示,現(xiàn)有如下說法:①在參與調(diào)查的500名運動員中任取1人,抽到對主辦方表示滿意的男性運動員的概率為;②在犯錯誤的概率不超過1%的前提下可以認為“是否對主辦方表示滿意與運動員的性別有關(guān)”;③沒有99.9%的把握認為“是否對主辦方表示滿意與運動員的性別有關(guān)”;則正確命題的個數(shù)為( )附:
男性運動員 | 女性運動員 | |||||
對主辦方表示滿意 | 200 | 220 | ||||
對主辦方表示不滿意 | 50 | 30 | ||||
0.100 | 0.050 | 0.010 | 0.001 | |||
k | 2.706 | 3.841 | 6.635 | 10.828 | ||
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為.
(Ⅰ)求的解析式;
(Ⅱ)當,求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點在x軸上的橢圓C:經(jīng)過點,橢圓C的離心率為.,是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標準方程;
(2)若點M為的中點(O為坐標原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間四邊形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,則空間四邊形ABCD的外接球的表面積為( )
A. 60π B. 36π C. 24π D. 12π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=x,l2:y=-x,動點P,Q分別在l1,l2上移動,|PQ|=2,N是線段PQ的中點,記點N的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點M(0,1)分別作直線MA,MB交曲線C于A,B兩點,設(shè)這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】藥材人工種植技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:人工種植藥材時,某種藥材在一定的條件下,每株藥材的年平均生長量單位:千克是每平方米種植株數(shù)x的函數(shù).當x不超過4時,v的值為2;當時,v是x的一次函數(shù),其中當x為10時,v的值為4;當x為20時,v的值為0.
當時,求函數(shù)v關(guān)于x的函數(shù)表達式;
當每平方米種植株數(shù)x為何值時,每平方米藥材的年生長總量單位:千克取得最大值?并求出這個最大值.年生長總量年平均生長量種植株數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)滿足,且時有,甲、乙、丙、丁四位同學(xué)有下列結(jié)論:
甲:;
乙:函數(shù)在上是增函數(shù);
丙:函數(shù)關(guān)于直線對稱;
。喝,則關(guān)于的方程在上所有根之和為.
其中正確的是( )
A.乙、丁B.乙、丙C.甲、乙、丙D.乙、丙、丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當不超過4(尾/立方米)時,的值為(千克/年);當時,是的一次函數(shù);當達到(尾/立方米)時,因缺氧等原因,的值為(千克/年).
(1)當時,求函數(shù)的表達式;
(2)當養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達到最大,并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com