如圖,在梯形中,,,,平面平面,四邊形是矩形,,點在線段EF上.
(1)求異面直線與所成的角;
(2)求二面角的余弦值.
(1)900;(2).
解析試題分析:(1)要求異面直線所成的角,可轉(zhuǎn)化為求其中一條直線與另外一直線的平行線所成的角的大;(2)法一:利用幾何法,求二面角需要先找出二面角的平面角,再在平面角所在的三角形中根據(jù)邊長由余弦定理求平面角的余弦值,即二面角的余弦值;法二:利用向量法,首先建立直角坐標(biāo)系,寫出所需各點的坐標(biāo)以及向量的坐標(biāo),再設(shè)出二面角所在兩個面的法向量,利用向量垂直求出法向量的一組值,求兩個法向量的夾角的余弦值,從而得二面角的余弦值.
試題解析:(1)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,且
∴,∴
又∵平面平面ABCD,交線為AC,∴平面ACFE. ∴平面FE.
∴異面直線與所成的角為900 7分
(2)方法一;(幾何法)取EF中點G,EB中點H,連結(jié)DG、GH、DH,
∵容易證得DE=DF,∴
∵平面ACFE,∴ 又∵,∴
又∵,∴
∴是二面角B—EF—D的平面角.
在△BDE中
∴∴,
∴又∴在△DGH中,
由余弦定理得即二面角B—EF—D的平面角余弦值為. 15分
方法二;(向量法)以C為坐標(biāo)原點,建立如圖所示的直角坐標(biāo)系,
,,,,
所以,,
分別設(shè)平面BEF與平面DEF的法向量為
,
所以,令,則
又,顯然,令
所以,,設(shè)二面角的平面角為為銳角
所以 15分
考點:1、異面直線所成的角;2、二面角;3、面面垂直的性質(zhì)定理;4、余弦定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥平面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三角形與所在平面互相垂直,且,,,點,分別在線段上,沿直線將向上翻折,使與重合.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明:B1C1⊥CE;
(2)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為.求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點,G是AE,DF的交點.
(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(如圖1)在平面四邊形中,為中點,,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點,并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點.
(1)求三棱錐的體積;
(2)在線段PC上是否存在一點M,使直線與直線所成角為?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(1) 證明:BD⊥平面PAC;
(2) 若AD=2,當(dāng)PC與平面ABCD所成角的正切值為時,求四棱錐P-ABCD的外接球表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐A-BCDE中,側(cè)面∆ADE是等邊三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4, ,M是DE的中點,F(xiàn)是AC的中點,且AC=4,
求證:(1)平面ADE⊥平面BCD;
(2)FB∥平面ADE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com