一個盒子裝有六張卡片,上面分別寫著如下六個定義域為的函數(shù):,,,,.
(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個新函數(shù),求所得函數(shù)是奇函數(shù)的概率;
(2)現(xiàn)從盒子中進行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

(1);(2)詳見解析.

解析試題分析:(1)利用性質(zhì)“奇函數(shù)+奇函數(shù)=奇函數(shù)”這一性質(zhì)得到所抽取的兩個函數(shù)都是奇函數(shù),然后再用排列組合結(jié)合古典概型的概率公式計算相應(yīng)事件的概率;(2)先列舉出隨機變量的全部可能取值,利用條件概率的計算公式計算隨機變量子在相應(yīng)的取值下對應(yīng)的概率,從而列舉出隨機變量的分布列,最終計算出隨機變量的數(shù)學(xué)期望.
試題解析:(1)六個函數(shù)中是奇函數(shù)的有,,
由這3個奇函數(shù)中的任意兩個函數(shù)相加均可得一個新的奇函數(shù).
記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,
由題意知
(2)可取1,2,3,4 ,,   
,    
的分布列為


1
2
3
4






答:的數(shù)學(xué)期望為.
考點:1.排列組合;2.條件概率;3.隨機變量的概率分布列與數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校為組建校籃球隊,對報名同學(xué)進行定點投籃測試,規(guī)定每位同學(xué)最多投3次,每次在AB處投籃,在A處投進一球得3分,在B處投進一球得2分,否則得0分,每次投籃結(jié)果相互獨立,將得分逐次累加并用X表示,如果X的值不低于3分就認為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃方案有以下兩種:
方案1:先在A處投一球,以后都在B處投;
方案2:都在B處投籃.
已知甲同學(xué)在A處投籃的命中率為0.4,在B處投籃的命中率為0.6.
(1)甲同學(xué)若選擇方案1,求X=2時的概率;
(2)甲同學(xué)若選擇方案2,求X的分布列和數(shù)學(xué)期望;
(3)甲同學(xué)選擇哪種方案通過測試的可能性更大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下列表:

 
喜愛打籃球
不喜愛打籃球
合計
男生
 
5
 
女生
10
 
 
合計
 
 
50
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為ξ,求ξ的分布列與期望.
下面的臨界值表供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:K2=,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

學(xué)校舉行演講比賽,高二(12)班有4名男同學(xué)和3名女同學(xué)都很想?yún)⒓舆@次活動,現(xiàn)從中選一名男同學(xué)和一名女同學(xué)代表本班參賽,求女同學(xué)甲參賽的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上每隔小時抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別記錄抽查數(shù)據(jù),獲得重量數(shù)據(jù)的莖葉圖如圖所示.

(1)根據(jù)樣品數(shù)據(jù),計算甲、乙兩個車間產(chǎn)品重量的平均值與方差,并說明哪個車間的產(chǎn)品的重量相對較穩(wěn)定;
(2)若從乙車間件樣品中隨機抽取兩件,求所抽取的兩件樣品的重量之差不超過克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小波以游戲方式?jīng)Q定:是去打球、唱歌還是去下棋.游戲規(guī)則為:以O(shè)為起點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X,若就去打球;若就去唱歌;若就去下棋.

(Ⅰ)分別求小波去下棋的概率和不去唱歌的概率.
(Ⅱ)寫出數(shù)量積X的所有可能取值,并求X分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某旅游推介活動晚會進行嘉賓現(xiàn)場抽獎活動,抽獎規(guī)則是:抽獎盒中裝有個大小相同的小球,分別印有“多彩十藝節(jié)”和“美麗泉城行”兩種標志,搖勻后,參加者每次從盒中同時抽取兩個小球,若抽到兩個球都印有“多彩十藝節(jié)”標志即可獲獎.
(I)活動開始后,一位參加者問:盒中有幾個“多彩十藝節(jié)”球?主持人笑說:我只知道從盒中同時抽兩球不都是“美麗泉城行”標志的概率是,求抽獎?wù)攉@獎的概率;
(Ⅱ)上面條件下,現(xiàn)有甲、乙、丙、丁四人依次抽獎,抽后放回,另一個人再抽,用表示獲獎的人數(shù),求的分布列及.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于分為優(yōu)秀,分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部人中隨機抽取人為優(yōu)秀的概率為.

 
優(yōu)秀
非優(yōu)秀
合計
甲班

 
 
乙班
 

 
合計
 
 

(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為成績與班級有關(guān)系?
(3)在甲、乙兩個理科班優(yōu)秀的學(xué)生中隨機抽取兩名學(xué)生,用表示抽得甲班的學(xué)生人數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某數(shù)學(xué)老師對本校2013屆高三學(xué)生某次聯(lián)考的數(shù)學(xué)成績進行分析,按1:50進行分層抽樣抽取的20名學(xué)生的成績進行分析,分數(shù)用莖葉圖記錄如圖所示(部分數(shù)據(jù)丟失),得到頻率分布表如下:


(1)求表中的值及分數(shù)在范圍內(nèi)的學(xué)生數(shù),并估計這次考試全校學(xué)生數(shù)學(xué)成績及格率(分數(shù)在范圍為及格);
(2)從大于等于110分的學(xué)生中隨機選2名學(xué)生得分,求2名學(xué)生的平均得分大于等于130分的概率.

查看答案和解析>>

同步練習(xí)冊答案