10.過拋物線y2=4x的焦點F的直線交拋物線于A,B兩點,且|AF|=2|BF|,則直線AB的斜率為(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$2\sqrt{2}$或$-2\sqrt{2}$D.$2\sqrt{3}或-2\sqrt{3}$

分析 當點A在第一象限,通過拋物線定義及|AF|=2|BF|可知B為CE中點,通過勾股定理可知|AC=2$\sqrt{2}$|BC|,進而計算可得結論.

解答 解:如圖,點A在第一象限.
過A、B分別向拋物線的準線作垂線,垂足分別為D、E,
過A作EB的垂線,垂足為C,則四邊形ADEC為矩形.
由拋物線定義可知|AD|=|AF|,|BE|=|BF|,
又∵|AF|=2|BF|,
∴|AD|=|CE|=2|BE|,即B為CE中點,
∴|AB|=3|BC|,
在Rt△ABC中,|AC|=2$\sqrt{2}$|BC|,
∴直線l的斜率為$\frac{AC}{BC}$=2$\sqrt{2}$;
當點B在第一象限時,同理可知直線l的斜率為-2$\sqrt{2}$,
∴直線l的斜率為±2$\sqrt{2}$,
故選:C.

點評 本題考查拋物線的簡單性質,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.在棱長為2的正方體ABCD-A1B1C1D1中,M是棱A1D1的中點,過C1,B,M作正方體的截面,則這個截面的面積為(  )
A.$\frac{3\sqrt{5}}{2}$B.$\frac{3\sqrt{5}}{8}$C.$\frac{9}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知橢圓E的中心為原點O,焦點在x軸上,E上的點與E的兩個焦點構成的三角形面積的最大值為12,直線4x+5y+12=0交橢圓于E于M,N兩點.設P為線段MN的中點,若直線OP的斜率等于$\frac{4}{5}$,則橢圓E的方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知i為虛數(shù)單位,則復數(shù)$\frac{1}{1+i}$在復平面內對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-ax-1-$\frac{{x}^{2}}{2}$,x∈R
(1)當a=2,求f(x)的圖象在點(0,f(0))處的切線方程;
(2)若對任意x≥0都有f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在直角坐標系xOy中,已知圓C:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ為參數(shù)),點P在直線l:x+y-4=0上,以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系.
( I)求圓C和直線l的極坐標方程;
( II)射線OP交圓C于R,點Q在射線OP上,且滿足|OP|2=|OR|•|OQ|,求Q點軌跡的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(xi,yi)(i=1,2,…,6),如表所示:
試銷單價x(元)456789
產(chǎn)品銷量y(件)q8483807568
已知$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}$=80.
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關關系,求產(chǎn)品銷量y(件)關于試銷單價x(元)的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的線性回歸方程得到的與xi對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)(xi,yi)對應的殘差的絕對值$|\widehat{y_i}-{y_i}|≤1$時,則將銷售數(shù)據(jù)(xi,yi)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)ξ的分布列和數(shù)學期望E(ξ).
(參考公式:線性回歸方程中$\widehatb$,$\widehata$的最小二乘估計分別為$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.“x2+5x-6>0”是“x>2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若直線ax+by+1=0(a>0,b>0)過圓x2+y2+8x+2y+1=0的圓心,則$\frac{1}{a}$+$\frac{4}$的最小值為16.

查看答案和解析>>

同步練習冊答案