2.“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)(xi,yi)(i=1,2,…,6),如表所示:
試銷單價(jià)x(元)456789
產(chǎn)品銷量y(件)q8483807568
已知$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}$=80.
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的線性回歸方程得到的與xi對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)(xi,yi)對應(yīng)的殘差的絕對值$|\widehat{y_i}-{y_i}|≤1$時(shí),則將銷售數(shù)據(jù)(xi,yi)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取3個(gè),求“好數(shù)據(jù)”個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望E(ξ).
(參考公式:線性回歸方程中$\widehatb$,$\widehata$的最小二乘估計(jì)分別為$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)

分析 (Ⅰ)利用$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}=80$,可求得q.
(Ⅱ)利用公式求解回歸直線方程中的幾何量,即可得到回歸直線方程.
(Ⅲ)求出ξ的所有可能取值為0,1,2,3.求出概率,得到ξ的分布列然后求解期望即可.

解答 解:(Ⅰ)$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}=80$,可求得q=90.
(Ⅱ)$\widehatb=\frac{{\sum_{i=1}^6{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^6{x_i^2-n{{(\overline x)}^2}}}}=\frac{3050-6×6.5×80}{271-253.5}=-\frac{70}{17.5}=-4$,
$\widehata=\overline y-\widehatb\overline x=80+4×6.5=106$,
所以所求的線性回歸方程為$\widehaty=-4x+106$.
(Ⅲ)利用(Ⅱ)中所求的線性回歸方程$\widehaty=-4x+106$
可得,當(dāng)x1=4時(shí),$\widehat{y_1}=90$;當(dāng)x2=5時(shí),$\widehat{y_2}=86$;
當(dāng)x3=6時(shí),$\widehat{y_3}=82$;當(dāng)x4=7時(shí),$\widehat{y_4}=78$;當(dāng)x5=8時(shí),$\widehat{y_5}=74$;當(dāng)x6=9時(shí),$\widehat{y_6}=70$.
與銷售數(shù)據(jù)對比可知滿足$|\widehat{y_i}-{y_i}|≤1$(i=1,2,…,6)的共有3個(gè)“好數(shù)據(jù)”:(4,90)、(6,83)、(8,75).
于是ξ的所有可能取值為0,1,2,3.$P(ξ=0)=\frac{C_3^3}{C_6^3}=\frac{1}{20}$;$P(ξ=1)=\frac{C_3^1C_3^2}{C_6^3}=\frac{9}{20}$;
$P(ξ=2)=\frac{C_3^2C_3^1}{C_6^3}=\frac{9}{20}$;$P(ξ=3)=\frac{C_3^3}{C_6^3}=\frac{1}{20}$,
∴ξ的分布列為:

ξ0123
P$\frac{1}{20}$$\frac{9}{20}$$\frac{9}{20}$$\frac{1}{20}$
于是$E(ξ)=0×\frac{1}{20}+1×\frac{9}{20}+2×\frac{9}{20}+3×\frac{1}{20}=\frac{3}{2}$.

點(diǎn)評 本題考查離散型隨機(jī)變量的分布列以及期望的求法,回歸直線方程的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=$\frac{{x}^{2}}{2}$+sinx+2014,則f′(x)的大致圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點(diǎn)(1,2)且與直線y=2x+1垂直的直線的方程為( 。
A.x+2y-3=0B.2x-y+4=0C.x+2y+3=0D.x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且|AF|=2|BF|,則直線AB的斜率為( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$2\sqrt{2}$或$-2\sqrt{2}$D.$2\sqrt{3}或-2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U=R,集合A={x|x2+x-6>0},B={y|y≤3},則(∁UA)∩B=( 。
A.[-3,3]B.[-1,2]C.[-3,2]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過拋物線y2=4x的焦點(diǎn)F且斜率為$2\sqrt{2}$的直線交拋物線于A,B兩點(diǎn)(xA>xB),則$\frac{{|{AF}|}}{{|{BF}|}}$=( 。
A.$\frac{3}{2}$B.$\frac{3}{4}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,離心率為$\frac{1}{2}$,點(diǎn)P為橢圓上一點(diǎn),且△PF1F2的周長為12,那么C的方程為( 。
A.$\frac{{x}^{2}}{25}$+y2=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{24}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l:$\sqrt{2}ρsin(θ\right.$$+\frac{π}{4})=t$=t經(jīng)過點(diǎn)$P({4\sqrt{2},\frac{π}{4}})$,曲線C:ρ2(1+3sin2θ)=4.
(Ⅰ)求直線l和曲線C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)Q為曲線C上任意一點(diǎn),且點(diǎn)Q到直線l的距離表示為d,求d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某市為了鼓勵(lì)市民節(jié)約用水,實(shí)行“階梯式”水價(jià),將該市每戶居民的月用水量劃分為三檔:月用水量不超過4噸的部分按2元/噸收費(fèi),超過4噸但不超過8噸的部分按4元/噸收費(fèi),超過8噸的部分按8元/噸收費(fèi).
(1)求居民月用水量費(fèi)用y(單位:元)關(guān)于月用水量x(單位:噸)的函數(shù)解析式;
(2)為了了解居民的用水情況,通過抽樣,獲得今年3月份100戶居民每戶的用水量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年3月份用水費(fèi)用不超過16元的占66%,求a,b的值;
(3)在滿足條件(2)的條件下,若以這100戶居民用水量的頻率代替該月全市居民用戶用水量的概率.且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.記為該市居民用戶3月份的用水費(fèi)用,求y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案