【題目】四棱錐中,底面是邊長(zhǎng)為2的菱形,.,且平面,,點(diǎn)分別是線段上的中點(diǎn),在上.且.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面的成角的正弦值;
(Ⅲ)請(qǐng)畫出平面與四棱錐的表面的交線,并寫出作圖的步驟.
【答案】(1)見解析(2)(3)四邊形為平面與四棱錐的表面的交線
【解析】分析:(Ⅰ)推導(dǎo)出,由此能證明平面;
(Ⅱ)推導(dǎo)出,,,以O(shè)為原點(diǎn),OA、OB、OP分別為x、y、z軸建立空間直角做消息,利用向量法能求出直線AB與平面EFG的所成角的正弦值;
(Ⅲ)法1:延長(zhǎng)分別交延長(zhǎng)線于,連接,發(fā)現(xiàn)剛好過點(diǎn),,連接,則四邊形為平面與四棱錐的表面的交線.
法2:記平面與直線的交點(diǎn)為,設(shè),,利用向量法求出,從而即為點(diǎn).連接,,則四邊形為平面與四棱錐的表面的交線.
解析:解:(Ⅰ)在中,因?yàn)辄c(diǎn)分別是線段上的中點(diǎn),
所以
因?yàn)?/span>平面,平面.
所以平面.
(Ⅱ)因?yàn)榈酌?/span>是邊長(zhǎng)為2的菱形,
所以,
因?yàn)?/span>平面,
所以,,
如圖,建立空間直角坐標(biāo)系,則依題意可得
,,,,,,,
所以,,
設(shè)平面的法向量為,則由可得,
令,可得
因?yàn)?/span>.
所以直線與平面的成角的正弦值為
(Ⅲ)法Ⅰ:延長(zhǎng)分別交延長(zhǎng)線于,連接,發(fā)現(xiàn)剛好過點(diǎn),,連接,則四邊形為平面與四棱錐的表面的交線.
法2:記平面與直線的交點(diǎn)為,設(shè),則
由,可得.
所以即為點(diǎn).
所以連接,,則四邊形為平面與四棱錐的表面的交線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,滿足,,,且.若存在,使得成立,則實(shí)數(shù)的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不單調(diào),求的取值范圍;
(2)設(shè),若函數(shù)在區(qū)間恒有意義,求實(shí)數(shù)的取值范圍;
(3)已知方程在有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)定點(diǎn),, 動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線,直線:.
(1)求曲線的軌跡方程;
(2)若與曲線交于不同的、兩點(diǎn),且 (為坐標(biāo)原點(diǎn)),求直線的斜率;
(3)若,是直線上的動(dòng)點(diǎn),過作曲線的兩條切線、,切點(diǎn)為、,探究:直線是否過定點(diǎn),若存在定點(diǎn)請(qǐng)寫出坐標(biāo),若不存在則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為)
組別 | 步數(shù)分組 | 頻數(shù) |
2 | ||
10 | ||
2 | ||
(Ⅰ)寫出的值,并回答這20名“微信運(yùn)動(dòng)”團(tuán)隊(duì)成員一天行走步數(shù)的中位數(shù)落在哪個(gè)組別;
(Ⅱ)記組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為,,組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為,,試分別比較與以,與的大。(只需寫出結(jié)論)
(Ⅲ)從上述兩個(gè)組別的數(shù)據(jù)中任取2個(gè)數(shù)據(jù),記這2個(gè)數(shù)據(jù)步數(shù)差的絕對(duì)值為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)、、均在拋物線上.
(1)寫出該拋物線的方程及其準(zhǔn)線方程;
(2)當(dāng)與的斜率存在且傾斜角互補(bǔ)時(shí),求的值及直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù)的一條對(duì)稱軸是;
②函數(shù)的圖象關(guān)于點(diǎn)(,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若,則,其中
以上四個(gè)命題中正確的有 (填寫正確命題前面的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com