【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運動”團(tuán)隊中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
對這20個數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表(設(shè)步數(shù)為)
組別 | 步數(shù)分組 | 頻數(shù) |
2 | ||
10 | ||
2 | ||
(Ⅰ)寫出的值,并回答這20名“微信運動”團(tuán)隊成員一天行走步數(shù)的中位數(shù)落在哪個組別;
(Ⅱ)記組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為,,組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為,,試分別比較與以,與的大小;(只需寫出結(jié)論)
(Ⅲ)從上述兩個組別的數(shù)據(jù)中任取2個數(shù)據(jù),記這2個數(shù)據(jù)步數(shù)差的絕對值為,求的分布列和數(shù)學(xué)期望.
【答案】(1),,;(2),;(3)見解析
【解析】分析:(Ⅰ)利用對這20個數(shù)據(jù)按組距1000進(jìn)行分組,得到,,利用中位數(shù)定義能求出這20名“微信運動”團(tuán)隊成員一天行走步數(shù)的中位數(shù)落在B組;
(Ⅱ)由平均數(shù)與方差的性質(zhì)能比較與,與的大小;
(Ⅲ)的可能取值為 0,600,3400,4000,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.
解析:解:(Ⅰ),,;
(Ⅱ),;
(Ⅲ)的可能取值為 0,600,3400,4000,
0 | 600 | 3400 | 4000 | |
的數(shù)學(xué)期望為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若是偶函數(shù),求的值;
(2)若存在,使得成立,求實數(shù)的取值范圍;
(3)設(shè)函數(shù),若在有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,底面是邊長為2的菱形,.,且平面,,點分別是線段上的中點,在上.且.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面的成角的正弦值;
(Ⅲ)請畫出平面與四棱錐的表面的交線,并寫出作圖的步驟.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從5名男生和4名女生中選出4人去參加座談會,問:
(1)如果4人中男生和女生各選2人,有多少種選法?
(2)如果男生中的甲與女生中的乙至少要有1人在內(nèi),有多少種選法?
(3)如果4人中必須既有男生又有女生,有多少種選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的左右焦點,點在橢圓上,且.
(1)求橢圓的方程;
(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1與雙曲線C2有相同的左右焦點F1,F2,P為橢圓C1與雙曲線C2在第一象限內(nèi)的一個公共點,設(shè)橢圓C1與雙曲線C2的離心率分別為e1,e2,且=,若∠F1PF2=,則雙曲線C2的漸近線方程為( )
A. x±y=0 B. x±y=0
C. x±y=0 D. x±2y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)的定義域為,且存在非零常數(shù),對任意 , 恒成立,則稱為線周期函數(shù), 為的線周期.
(1)下列函數(shù)①,②,③(其中表示不超過x的最大整數(shù)),是線周期函數(shù)的是 (直接填寫序號);
(2)若為線周期函數(shù),其線周期為,求證: 為周期函數(shù);
(3)若為線周期函數(shù),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com