【題目】已知橢圓的離心率為,且過點,若點在橢圓C上,則點稱為點M的一個“橢點”.
(1)求橢圓C的標準方程;
(2)若直線與橢圓C相交于A,B兩點,且A,B兩點的“橢點”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標原點,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】我們在求高次方程或超越方程的近似解時常用二分法求解,在實際生活中還有三分法.比如借助天平鑒別假幣.有三枚形狀大小完全相同的硬幣,其中有一假幣(質(zhì)量較輕),把兩枚硬幣放在天平的兩端,若天平平衡,則剩余一枚為假幣,若天平不平衡,較輕的一端放的硬幣為假幣.現(xiàn)有 27 枚這樣的硬幣,其中有一枚是假幣(質(zhì)量較輕),如果只有一臺天平,則一定能找到這枚假幣所需要使用天平的最少次數(shù)為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年6月13日,三屆奧運亞軍,羽壇傳奇,馬來西亞名將李宗偉宣布退役,當天有大量網(wǎng)友關注此事件,某網(wǎng)上論壇從關注此事件跟帖中,隨機抽取了100名網(wǎng)友進行調(diào)查統(tǒng)計,先分別統(tǒng)計他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組;,得到如下圖所小的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強烈關注”,否則為“一般關注”,對這100名網(wǎng)友進一步統(tǒng)計,得到部分數(shù)據(jù)如下的列聯(lián)表.
(1)在答題卡上補全2×2列聯(lián)表中數(shù)據(jù),并判斷能否有95%的把握認為網(wǎng)友對此事件是否為“強烈關注”與性別有關?
(2)該論壇欲在上述“強烈關注”的網(wǎng)友中按性別進行分層抽樣,共抽取5人,并在此5人中隨機抽取兩名接受訪談,記女性訪談者的人數(shù)為占,求5的分布列與數(shù)學期望.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式與數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個正和一個平行四邊形ABDE在同一個平面內(nèi),其中,,AB,DE的中點分別為F,G.現(xiàn)沿直線AB將翻折成,使二面角為,設CE中點為H.
(1)(i)求證:平面平面AGH;
(ii)求異面直線AB與CE所成角的正切值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線與橢圓有相同的焦點,直線為雙曲線的一條漸近線.
(1)求雙曲線的方程;
(2)過點的直線交雙曲線于、兩點,交軸于點(點與的頂點不重合),當,且,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,為橢圓的左、右焦點,動點的坐標為,過點的直線與橢圓交于,兩點.
(3)求,的坐標;
(4)若直線,,的斜率之和為0,求的所有整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對任意,都有,設為的導函數(shù),,則函數(shù)的零點個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com