在某大學(xué)聯(lián)盟的自主招生考試中,報(bào)考文史專業(yè)的考生參加了人文基礎(chǔ)學(xué)科考試科目“語(yǔ)文”和“數(shù)學(xué)”的考試.某考場(chǎng)考生的兩科考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如下圖所示,本次考試中成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/43/9/1payl3.png" style="vertical-align:middle;" />內(nèi)的記為,其中“語(yǔ)文”科目成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/b0/0/pv4s42.png" style="vertical-align:middle;" />內(nèi)的考生有10人.

(1)求該考場(chǎng)考生數(shù)學(xué)科目成績(jī)?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的人數(shù);
(2)已知參加本考場(chǎng)測(cè)試的考生中,恰有2人的兩科成績(jī)均為.在至少一科成績(jī)?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的考生中,隨機(jī)抽取2人進(jìn)行訪談,求這2人的兩科成績(jī)均為的概率.

(1)3;(2).

解析試題分析:(1)頻率分布直方圖中面積表示頻率,設(shè)頻率=,為總?cè)藬?shù),所以,結(jié)合的頻率,;
(2)首先算出語(yǔ)文與數(shù)學(xué)中成績(jī)?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/15/d/fripk2.png" style="vertical-align:middle;" />的人數(shù),通過(guò)列舉的方法計(jì)算出選出的2人所有可能的情況及這兩人的兩科成績(jī)等級(jí)均為的情況;利用古典概型概率公式求出隨機(jī)抽取兩人進(jìn)行訪談,這兩人的兩科成績(jī)等級(jí)均為的概率。
試題解析:(1)該考場(chǎng)的考生人數(shù)為10÷0.25=40人.   2分
數(shù)學(xué)科目成績(jī)?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的人數(shù)為
40×(1-0.0025×10-0.015×10-0.0375×10×2)=40×0.075=3人.   6分
(2)語(yǔ)文和數(shù)學(xué)成績(jī)?yōu)锳的各有3人,其中有兩人的兩科成績(jī)均為,所以還有兩名同學(xué)只有一科成績(jī)?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />.   8分
設(shè)這四人為甲、乙、丙、丁,其中甲、乙的兩科成績(jī)均為,則在至少一科成績(jī)?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的考生中,隨機(jī)抽取兩人進(jìn)行訪談,基本事件為{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁}, {丙,丁}共6個(gè),   10分
設(shè)“隨機(jī)抽取兩人,這兩人的兩科成績(jī)均為”為事件,則事件包含的事件有1個(gè),則.   12分
考點(diǎn):1.頻率分布直方圖的應(yīng)用;2.古典概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

通過(guò)隨機(jī)詢問(wèn)110名不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

 


總計(jì)
愛(ài)好
40
20
60
不愛(ài)好
20
30
50
總計(jì)
60
50
110
附: 

0.050
0.010
0.001

3.841
6.635
10.828
 
試考查大學(xué)生“愛(ài)好該項(xiàng)運(yùn)動(dòng)是否與性別有關(guān)”,若有關(guān),請(qǐng)說(shuō)明有多少把握。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評(píng)價(jià)該產(chǎn)品的等級(jí).若S≤4,則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào)
A1
A2
A3
A4
A5
質(zhì)量指標(biāo)(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
產(chǎn)品編號(hào)
A6
A7
A8
A9
A10
質(zhì)量指標(biāo)(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機(jī)抽取兩件產(chǎn)品,
(1)用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
(2)設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績(jī)抽樣調(diào)查,先將800人按001,002, ,800進(jìn)行編號(hào);
(1)如果從第8行第7列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢查的3個(gè)人的編號(hào);
(下面摘取了第7行到第9行)

(2)抽取的100的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?br />成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?0+18+4=42,若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是30%,求a,b的值:

人數(shù)
數(shù)學(xué)
優(yōu)秀
良好
及格
地理
優(yōu)秀
7
20
5
良好
9
18
6
及格
a
4
b
(3)在地理成績(jī)及格的學(xué)生中,已知求數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某化肥廠有甲、乙兩個(gè)車間包裝肥料,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量(單位:kg),分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種方法?
(2)試計(jì)算甲、乙車間產(chǎn)品重量的平均數(shù)與方差,并說(shuō)明哪個(gè)車間產(chǎn)品較穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在某批次的某種燈泡中,隨機(jī)地抽取個(gè)樣品,并對(duì)其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個(gè)等級(jí),其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)
頻數(shù)
頻率















合計(jì)


(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出、的值;
(2)某人從燈泡樣品中隨機(jī)地購(gòu)買了個(gè),如果這個(gè)燈泡的等級(jí)情況恰好與按三個(gè)等級(jí)分層抽樣所得的結(jié)果相同,求的最小值;
(3)某人從這個(gè)批次的燈泡中隨機(jī)地購(gòu)買了個(gè)進(jìn)行使用,若以上述頻率作為概率,用表示此人所購(gòu)買的燈泡中次品的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語(yǔ)改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語(yǔ)聽力”的問(wèn)題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:

態(tài)度

 

應(yīng)該取消
應(yīng)該保留
無(wú)所謂
在校學(xué)生
2100人
120人
y
社會(huì)人士
600人
x
z
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問(wèn)卷訪談,問(wèn)應(yīng)在持“無(wú)所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)如下表:

 
1號(hào)
2號(hào)
3號(hào)
4號(hào)
5號(hào)
甲組
4
5
x
9
10
乙組
5
6
7
y
9
(1)已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)為7,分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;
(2)質(zhì)檢部門從該車間甲、乙兩組中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若2人加工的合格零件個(gè)數(shù)之和超過(guò)14,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
晝夜溫差
x(℃)
10
11
13
12
8
6
就診人數(shù)
y(個(gè))
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率.
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+.
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
(參考公式:==,=-).

查看答案和解析>>

同步練習(xí)冊(cè)答案