9.設(shè)函數(shù)f(x)=x2+3x-2,則 $\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=( 。
A.5B.-5C.10D.-10

分析 根據(jù)導(dǎo)數(shù)的定義和導(dǎo)數(shù)的運算法則計算即可.

解答 解:∵f(x)=x2+3x-2,
∴f′(x)=2x+3,
∴f′(1)=2+3=5,
∴$\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=2$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{2△x}$=2f′(1)=10,
故選:C.

點評 本題考查了導(dǎo)數(shù)的定義和導(dǎo)數(shù)的運算法則,屬于基礎(chǔ)題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知正數(shù)a,b滿足a2+b2=1,則ab的最大值為(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=lnx+ax(a<0)的單調(diào)增區(qū)間為$(0,-\frac{1}{a}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若直線ax+2y+6=0和直線x+a(a+1)y+a2-1=0垂直,則a=0或$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.等比數(shù)列{an}的前n項和為Sn,且4a1,2a2,a3成等差數(shù)列,若a1=1,則S10=( 。
A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知向量$\overrightarrow a=(-2,1),\overrightarrow b=(3,5)$,則$\overrightarrow a-2\overrightarrow b$=( 。
A.(-4,-9)B.(-8,-9)C.(8,11)D.(-5,-6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等比數(shù)列{an}的前n項和為Sn,a1=$\frac{2}{3}$,且S2+$\frac{1}{2}$a2=1
(1)求數(shù)列{an}的通項公式;
(2)記bn=log3$\frac{{{a}_{n}}^{2}}{4}$,求數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f(x)+xf′(x)<xf(x)對x∈R恒成立,則( 。
A.3f(3)>2ef(2)B.3f(3)<2ef(2)C.f(2)>0D.f(-2)>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若傾斜角為α的直線l與曲線y=x4相切于點(1,1),則cos2α-sin2α的值為(  )
A.$-\frac{1}{2}$B.1C.$-\frac{3}{5}$D.$-\frac{7}{17}$

查看答案和解析>>

同步練習冊答案