棱長為3的正方體的外接球(各頂點均在球面上)的表面積為
 
考點:球的體積和表面積
專題:計算題,空間位置關系與距離,球
分析:由正方體與外接球的關系為正方體的對角線長為球的直徑,設球的半徑為r,則3
3
=2r,求出r,再由球的表面積公式計算即可得到.
解答: 解:由正方體與外接球的關系為正方體的對角線長為球的直徑,
設球的半徑為r,
則3
3
=2r,解得,r=
3
3
2

則球的表面積為S=4πr2=4π×
27
4
=27π.
故答案為:27π.
點評:本題考查正方體與外接球的關系,考查球的表面積公式的運用,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圓心在(1,-3),直徑為4的圓的參數(shù)方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,-3,0),
b
=(k,0,3),若
a
,
b
成120°的角,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xa的圖象過點(4,2),令an=
1
f(n+1)+f(n)
,n∈N*,記數(shù)列{an}的前n項和為Sn,則S2015=( 。
A、
2013
-1
B、
2014
-1
C、
2015
-1
D、
2016
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩個學校高三年級分別有1200人,1000人,為了了解兩個學校全體高三年級學生在該地區(qū)六校聯(lián)考的數(shù)學成績情況,采用分層抽樣方法從兩個學校一共抽取了110名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(1)計算x,y的值.
甲校乙校總計
優(yōu)秀
非優(yōu)秀
總計
(2)若規(guī)定考試成績在[120,150]內為優(yōu)秀,請分別估計兩個學校數(shù)學成績的優(yōu)秀率.
(3)由以上統(tǒng)計數(shù)據(jù)填寫右面2×2列聯(lián)表,并判斷是否有90%的把握認為兩個學校的數(shù)學成績有差異.
參考數(shù)據(jù)與公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

由列聯(lián)表中數(shù)據(jù)計算臨界值表
P(K≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一塊橡膠泥表示的幾何體的三視圖如圖所示,將該橡膠泥揉成一個底面邊長為8的正三角形的三棱錐,則這個三棱錐的高為( 。
A、3
3
B、6
3
C、9
3
D、18
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2sin(2x+
π
6
),x∈[0,
6
]的圖象與直線y=m有三個交點,其交點的橫坐標分別為x1,x2,x3(x1<x2<x3),那么x1+2x2+x3的值是( 。
A、
4
B、
3
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a1nx-x
x
在x=l處的切線與直線x-y+10=0平行.
(1)求a的值;
(2)若函數(shù)y=f(x)-m在區(qū)間[l,e2]上有兩個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長為2
2
,則直線m的傾斜角為
 

查看答案和解析>>

同步練習冊答案