【題目】某企業(yè)準(zhǔn)備投資 萬元興辦一所中學(xué),對當(dāng)?shù)亟逃袌鲞M行調(diào)查后,得到了如下的數(shù)據(jù)表格(以班級為單位):
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和環(huán)境等因素,全?偘嗉壷辽 個,至多 個,若每開設(shè)一個初、高中班,可分別獲得年利潤 萬元、 萬元,則第一年利潤最大為
A. 萬元 B. 萬元 C. 萬元 D. 萬元
【答案】A
【解析】分析:設(shè)開設(shè)初中班個,高中班個,利潤為,則,根據(jù)題意得到約束條件,然后根據(jù)線性規(guī)劃求解.
詳解:設(shè)開設(shè)初中班個,高中班個,利潤為,則.
由題意得滿足的條件為,即.
畫出不等式組表示的可行域,如圖陰影部分所示.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/30/1956367377481728/1957962440146944/EXPLANATION/01dbe2cd0e5c474db8d28df00165e8d6.png]
由,得.平移直線(圖中的虛線),結(jié)合圖形可得,當(dāng)直線經(jīng)過可行域內(nèi)的點M時,直線在y軸上的截距最大,此時z取得最大值.
由解得.故點M的坐標(biāo)為(20,10).
∴(萬元),
即第一年利潤最大為70萬元.
故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐C﹣ABDE中,DB⊥平面ABC,AE∥DB,△ABC是邊長為2的等邊三角形,AE=1,M為AB的中點.
(1)求證:CM⊥EM;
(2)若直線DM與平面ABC所成角的正切值為2,求二面角B﹣CD﹣E的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系 中的一個橢圓,它的中心在原點,左焦點為 ,右頂點為 ,設(shè)點 .
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若 是橢圓上的動點,求線段 中點 的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其函數(shù)圖象的相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)的解析式及對稱中心;
(2)將函數(shù)的圖象向左平移個單位長度,再向上平移個單位長度得到函數(shù)的圖象,若關(guān)于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),設(shè)函數(shù),設(shè)
.
(1)求的取值范圍,并把表示為的函數(shù);
(2)若恒成立,求實數(shù)的取值范圍;
(3)若存在使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點 分別是Δ 的邊 的中點,連接 .現(xiàn)將 沿 折疊至Δ 的位置,連接 .記平面 與平面 的交線為 ,二面角 大小為 .
(1)證明:
(2)證明:
(3)求平面 與平面 所成銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 為等差數(shù)列 的前 項和,其中 ,且 .
(1)求常數(shù) 的值,并寫出 的通項公式;
(2)記 ,數(shù)列 的前 項和為 ,若對任意的 ,都有 ,求常數(shù) 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點 為圓心的圓與直線 相切,過點 的直線 與圓 相交于 兩點, 是 的中點, .
(1)求圓 的標(biāo)準(zhǔn)方程;
(2)求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角中,,,點在線段上.
(Ⅰ) 若,求的長;
(Ⅱ)若點在線段上,且,問:當(dāng)取何值時,的面積最小?并求出面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com