【題目】如圖,在等腰直角中,,,點(diǎn)在線(xiàn)段上.
(Ⅰ) 若,求的長(zhǎng);
(Ⅱ)若點(diǎn)在線(xiàn)段上,且,問(wèn):當(dāng)取何值時(shí),的面積最。坎⑶蟪雒娣e的最小值.
【答案】(Ⅰ)或(Ⅱ)當(dāng)時(shí),的最大值為,此時(shí)的面積取到最小值.即2時(shí),的面積的最小值為
【解析】
解:(1)在△OMP中,∠OPM=45°,OM=,OP=2,
由余弦定理得,OM2=OP2+MP2-2OP·MP·cos45°,
得MP2-4MP+3=0,
解得MP=1或MP=3.
(2)設(shè)∠POM=α,0°≤α≤60°,
在△OMP中,由正弦定理,
得=,
所以OM=,
同理ON=.
故S△OMN=OM·ON·sin∠MON
=×
=
=
=
=
=
=.
因?yàn)?/span>0°≤α≤60°,
30°≤2α+30°≤150°,
所以當(dāng)α=30°時(shí),sin(2α+30°)的最大值為1,
此時(shí)△OMN的面積取到最小值.
即∠POM=30°時(shí),△OMN的面積的最小值為8-4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)準(zhǔn)備投資 萬(wàn)元興辦一所中學(xué),對(duì)當(dāng)?shù)亟逃袌?chǎng)進(jìn)行調(diào)查后,得到了如下的數(shù)據(jù)表格(以班級(jí)為單位):
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和環(huán)境等因素,全?偘嗉(jí)至少 個(gè),至多 個(gè),若每開(kāi)設(shè)一個(gè)初、高中班,可分別獲得年利潤(rùn) 萬(wàn)元、 萬(wàn)元,則第一年利潤(rùn)最大為
A. 萬(wàn)元 B. 萬(wàn)元 C. 萬(wàn)元 D. 萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)藝術(shù)專(zhuān)業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩艘輪船都要停靠在同一個(gè)泊位,它們可能在一晝夜的任意時(shí)刻到達(dá).甲、乙兩船?坎次坏臅r(shí)間分別為4小時(shí)與2小時(shí),求有一艘船?坎次粫r(shí)必需等待一段時(shí)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)調(diào)查了某班全部 45 名同學(xué)參加書(shū)法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書(shū)法社團(tuán) | 未參加書(shū)法社團(tuán) | |
參加演講社團(tuán) | 8 | 5 |
未參加書(shū)法社團(tuán) | 2 | 30 |
(1)從該班隨機(jī)選 1 名同學(xué),求該同學(xué)至少參加上述一個(gè)社團(tuán)的概率;
(2)在既參加書(shū)法社團(tuán)又參加演講社團(tuán)的 8 名同學(xué)中,有 5 名男同學(xué),3名女同學(xué).現(xiàn)從這 5 名男同學(xué)和 3 名女同學(xué)中各隨機(jī)選 1 人,求被選中且未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分別求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)點(diǎn)A ( ,-2),B(-2 ,1);
(2)與橢圓 有相同焦點(diǎn)且經(jīng)過(guò)點(diǎn)M( ,1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為定義在上的函數(shù),其圖象關(guān)于軸對(duì)稱(chēng),當(dāng)時(shí),有,且當(dāng)時(shí),,若函數(shù)恰有個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠(chǎng)家舉行大型的促銷(xiāo)活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷(xiāo)費(fèi)用為x萬(wàn)元時(shí),銷(xiāo)售量t萬(wàn)件滿(mǎn)足t=5- (其中0 x a,a為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷(xiāo)售量相等,已知生產(chǎn)該產(chǎn)品t萬(wàn)件還需投入成本(10+2t)萬(wàn)元(不含促銷(xiāo)費(fèi)用),產(chǎn)品的銷(xiāo)售價(jià)格定為5+ 萬(wàn)元/萬(wàn)件.
(1)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷(xiāo)費(fèi)用x萬(wàn)元的函數(shù);
(2)促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠(chǎng)家的利潤(rùn)最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com