【題目】如圖所示,直三棱柱中,是邊長為2等邊三角形,的中點.

(1)求證:平面

(2)若與平面所成角為,求與平面所成角的正弦值.

【答案】(1)見解析;(2)

【解析】

(1)連接,證明出,從而證明平面.

(2)以為原點,建立如圖所示空間坐標系,求出平面的一個法向量,通過向量夾角公式,求出與法向量之間的夾角余弦值,從而得到與平面所成角的正弦值.

(1)連接,

四邊形為平行四邊形, 中點,又中點,

平面 平面

平面

(2) 因為是等邊三角形,的中點,所以

如圖,以為原點,建立如圖所示空間坐標系

與平面所成角為

,

,

設(shè)平面的一個法向量為,

,即,

,則,

,設(shè)與平面所成角為,則

,

故所求與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是(

A.中,若,則

B.在銳角三角形中,不等式恒成立

C.中,若,,則為等腰直角三角形

D.中,若,,三角形面積,則三角形外接圓半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某測量人員為了測量西江北岸不能到達的兩點之間的距離,她在西江南岸找到一個點,從點可以觀察到點,;找到一個點,從點可以觀察到點,;找到一個點,從點可以觀察到點,;并測量得到數(shù)據(jù):,,,,百米.

(1)求的面積;

(2)求,之間的距離的平方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,a3b3=2.證明:

(1)(ab)(a5b5)≥4;

(2)ab≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點F為拋物線C:x2=2py (p>0) 的焦點,點A(m,3)在拋物線C上,且|AF|=5,若點P是拋物線C上的一個動點,設(shè)點P到直線的距離為,設(shè)點P到直線的距離為

(1)求拋物線C的方程;

(2) 求的最小值;

(3)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點F為拋物線C:x2=2py (p>0) 的焦點,點A(m,3)在拋物線C上,且|AF|=5,若點P是拋物線C上的一個動點,設(shè)點P到直線的距離為,設(shè)點P到直線的距離為

(1)求拋物線C的方程;

(2) 求的最小值;

(3)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,,離心率為,且橢圓四個頂點構(gòu)成的菱形面積為

(1)求橢圓C的方程;

(2)若直線l :y=x+m與橢圓C交于M,N兩點,以MN為底邊作等腰三角形,頂點為P(3,-2),求m的值及△PMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,分別是橢圓 的長軸端點、短軸端點,為坐標原點,若,.

(1)求橢圓的標準方程;

(2)如果斜率為的直線交橢圓于不同的兩點 (都不同于點),線段的中點為,設(shè)線段的垂線的斜率為,試探求之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的單調(diào)遞減區(qū)間:

1;

2;

3.

查看答案和解析>>

同步練習(xí)冊答案