判斷函數(shù)f(x)=x3-2x2+5在區(qū)間[-2,2]上的單調(diào)性,并求其在區(qū)間[-2,2]上的最大值與最小值.
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用導(dǎo)數(shù)的正負,可得f(x)=x3-2x2+5在區(qū)間[-2,2]上的單調(diào)性,即可求出極值,然后求區(qū)間端點處的函數(shù)值,進行大小比較即可.
解答: 解:f′(x)=3x2-4x=3x(x-
4
3
),
令f′(x)=0,得x=0或
4
3
,
所以函數(shù)在(-2,0),(
4
3
,2)上單調(diào)遞增,在(0,
4
3
)上單調(diào)遞減,
因為f(-2)=-8-8+5=-11,f(0)=8,f(
4
3
)=
103
27
,f(2)=8-8+5=5,
所以f(x)在區(qū)間[-2,2]上的最大值為5,最小值為-11.
點評:本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值問題,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
cos(x-
π
12
),x∈R.
(1)求f(
π
3
)的值;    
(2)若cosθ=
3
5
,θ∈(0,
π
2
),求f(2θ-
π
6
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
2
,求下列各式的值:
(1)
cosα+sinα
cosα-sinα

(2)2sin2α-sinαcosα+cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=x|x-a|
(Ⅰ)當a=4時,寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當a=4時,求f(x)在區(qū)間(1,
9
2
)上的最值;
(Ⅲ)設(shè)a≠0函數(shù)f(x)在(p,q)上既有最大值又有最小值,請分別求出p,q的取值范圍(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2ax3-9x2+6(a-2)x+2,a∈R.
(1)若函數(shù)f(x)在x=1處取得極值,求實數(shù)a的值;
(2)若a=2,求函數(shù)f(x)在區(qū)間[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(m+1)3<(3-2m)3,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1,2,3,…,9這9個自然數(shù)中,任取3個不同的數(shù).
(1)求這3個數(shù)和為18的概率;
(2)這3個數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時組數(shù)的值是2).求組數(shù)的值是1時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax(a∈R),
(1)當a=2時,求y=f(x)在點x=1的切線方程;
(2)若直線x+y+m=0對任意的m∈R都不是曲線y=f(x)的切線,求a的取值范圍;
(3)設(shè)g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l過點(3,4),且(-2,1)是它的一個方向向量,則直線l的方程為
 

查看答案和解析>>

同步練習(xí)冊答案