設(shè)有兩個(gè)命題:
(1)關(guān)于x的不等式x2+2ax+4>0對(duì)一切x∈R恒成立;
(2)函數(shù)f(x)=(5-2a)x是增函數(shù),若命題有且只有一個(gè)是真命題,求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì),命題的真假判斷與應(yīng)用,函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)(1)、(2)是真命題時(shí),分別求得a的范圍,可得這2個(gè)命題中只有一個(gè)是真命題時(shí),實(shí)數(shù)a的取值范圍.
解答: 解:若命題(1)為真,要求△=(2a)2-16<0⇒-2<a<2.
命題(2)為真,要求5-2a>1⇒a<2.
若(1)真(2)假,則
-2<a<2
a≥2
⇒a∈ϕ
,
若(2)真(1)假,則
a≤-2或a≥2
a<2
⇒a≤-2
,
綜上可得,a≤-2.
點(diǎn)評(píng):本題主要考查命題的真假的判斷和應(yīng)用,二次函數(shù)的性質(zhì),體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,已知底面是邊長(zhǎng)為2的正方形,高為1,點(diǎn)E在B1B上,且滿足B1E=2EB.
(1)求證:D1E⊥A1C1;
(2)在棱B1C1上確定一點(diǎn)F,使A、E、F、D1四點(diǎn)共面,并求此時(shí)B1F的長(zhǎng);
(3)求幾何體ABED1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)獎(jiǎng)杯的三視圖,試根據(jù)獎(jiǎng)杯的三視圖計(jì)算它的表面積和體積.(尺寸如圖,單位:cm)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了檢測(cè)某種產(chǎn)品的質(zhì)量,抽取了一個(gè)容量為100的樣本,數(shù)據(jù)的分組及頻率如下表:
分組頻數(shù)頻率
[10、75,10、85)3
[10、85,10、95)9
[10、95,11、05)13
[11、05,11、15)16
[11、15,11、25)26
[11、25,11、35)20
[11、35,11、45)7
[11、45,11、55)4
[11、55,11、65)2
合計(jì)100
完成上面的頻率分布表;
根據(jù)上表畫出頻率分布直方圖;
根據(jù)上表和圖,估計(jì)數(shù)據(jù)落在[10、95,11、35)范圍內(nèi)的概率約是多少?
數(shù)據(jù)小于11、20的概率約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足
x-y+5≥0
x+y≥0
x≥3

(1)z=x2+y2的最大值和最小值
(2)z=
y
x-5
的最大值和最小值
(3)z=|2x-y+4|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-2)2,設(shè)a1=3,an+1=an-
f(an)
2an-4

(1)證明:數(shù)列{an-2}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過兩點(diǎn)A(-1,m),B(m,1),問:當(dāng)m取何值時(shí),直線l與y軸平行?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓E1
x2
a12
+
y2
b12
=1和橢圓E2
x2
a22
+
y2
b22
滿足
a2
a1
=
b2
b1
=m(m>0),則稱這兩個(gè)橢圓相似,m稱其為相似比.
(Ⅰ)求經(jīng)過點(diǎn)(
2
2
,
3
2
),且與橢圓C1:x2+2y2=1相似的橢圓C2的方程;
(Ⅱ)設(shè)過原點(diǎn)的一條射線l分別與(Ⅰ)中的橢圓C1,C2交于A、B兩點(diǎn),求|OA|•|OB|的取值范圍;
(Ⅲ)設(shè)直線l1:y=kx與(Ⅰ)中橢圓C2交于M、N兩點(diǎn)(其中M在第一象限),且直線l1與直線l2:x=t(t>0)交于點(diǎn)D,過D作DG∥MF(F為橢圓C2的右焦點(diǎn))且交x軸于點(diǎn)G,若直線MG與橢圓C2有且只有一個(gè)公共點(diǎn),求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,4,a2-2a},B={a-2,a2-4a+2,a2-3a+3,a2-5a},A∩B={1,3},則A∪B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案