(本小題滿分14分)在平面直角坐標系中,點M到兩點,的距離之和為,設(shè)點的軌跡為曲線.
(Ⅰ)寫出曲線的方程;
(Ⅱ)設(shè)過點的斜率為()的直線與曲線交于不同的兩點,,點在軸上,且,求點縱坐標的取值范圍.
(Ⅰ) . (II).
【解析】
(Ⅰ)曲線的方程根據(jù)定義易得,,c=1, 所以的方程為;
,轉(zhuǎn)化為P在直線的垂直平分線上,又點在軸上,解得,,求得范圍。
解:(Ⅰ)由題設(shè)知,
根據(jù)橢圓的定義,的軌跡是焦點為,,長軸長為的橢圓,
設(shè)其方程為
則, ,,所以的方程為. ………5分
(II)依題設(shè)直線的方程為.將代入并整理得,
. . ………6分
設(shè),,
則, ..………7分
設(shè)的中點為,則,,即. ………8分
因為,
所以直線的垂直平分線的方程為, ……9分
令解得,, .………10分
當時,因為,所以; .………12分
當時,因為,所以. .………13分
綜上得點縱坐標的取值范圍是. .………14分
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com