7.函數(shù)y=3-2cos(2x-$\frac{π}{3}$)的單調(diào)遞減區(qū)間是( 。
A.(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z)B.(kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$)(k∈Z)
C.(2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$)(k∈Z)D.(2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$)(k∈Z)

分析 本題即求函數(shù)y=2cos(2x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間,再利用余弦函數(shù)的單調(diào)性,得出結(jié)論.

解答 解:函數(shù)y=3-2cos(2x-$\frac{π}{3}$)的單調(diào)遞減區(qū)間,即函數(shù)y=2cos(2x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間,
令2kπ-π≤2x-$\frac{π}{3}$≤2kπ,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得原函數(shù)的減區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
結(jié)合所給的選項(xiàng),故選:B.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩B等于( 。
A.{1,5,7}B.{3,5,7}C.{3,9}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{0.5}x,x>0}\end{array}\right.$,則下列說(shuō)法正確的是( 。
①若a≤0,則f(f(a))=-a;
②若f(f(a))=-a,則a≤0;
③若a≥1,則f(f(a))=$\frac{1}{a}$;
④若f(f(a))=$\frac{1}{a}$,則a≥1.
A.①③B.②④C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,各頂點(diǎn)都在同一球面上,若該棱柱的體積為$\sqrt{3}$,BC=$\sqrt{3}$,AC=1,∠ACB=90°,則此球的體積等于( 。
A.$\frac{40\sqrt{10}}{3}$πB.$\frac{64\sqrt{2}}{3}$πC.$\frac{8\sqrt{2}}{3}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,點(diǎn)M是BC的中點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{AM}$=( 。
A.$\overrightarrow{a}$+$\overrightarrow$B.$\overrightarrow{a}$-$\overrightarrow$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$D.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$的定義域是( 。
A.(-∞,$\frac{1}{2}$)B.(-∞,0]C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)f(x)是R上的偶函數(shù),且在[0,+∞)上是單調(diào)遞增,若f(2)=0,則使f(log${\;}_{\frac{1}{2}}$x)<0成立的x的取值范圍是( 。
A.($\frac{\sqrt{2}}{2}$,4)B.(0,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{\sqrt{2}}{2}$)D.($\frac{1}{4}$,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知a,b∈R,i是虛數(shù)單位,若(1-2i)(2+ai)=b-2i,則a+b的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=ex-2x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)x>0時(shí),方程f(x)=kx2-2x無(wú)解,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案