【題目】近年來,福建省大力推進海峽西岸經(jīng)濟區(qū)建設,福州作為省會城市,在發(fā)展過程中,交通狀況一直倍受有關部門的關注,據(jù)有關統(tǒng)計數(shù)據(jù)顯示上午6點到10點,車輛通過福州市區(qū)二環(huán)路某一路段的用時y(分鐘)與車輛進入該路段的時刻t之間關系可近似地用如下函數(shù)給出:y= .求上午6點到10點,通過該路段用時最多的時刻.

【答案】解:當6≤t<9時,y′=﹣ t2+3t,由y′=0,得t=0,t=8 當6≤t<8時,y′>0,當8<t<9時,y′<0,
所以在t=8,ymax=18
當9t<10時,y′=﹣
當9<t<10時,y′<0,ymax=9ln9﹣9,
因為9ln9﹣9﹣18=9(ln9﹣3)=9(ln9﹣lne3)<0,
所以f(9)<f(8),所以通過該路段用時最多的時刻為8時
【解析】利用導數(shù)工具分別求出函數(shù)值在各段上的最大值點,通過兩者最大值得到結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,M、N分別是AB、BB1的中點,則異面直線MN與BC1所成角的大小是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x2﹣ax,g(x)=lnx,h(x)=f(x)+g(x)
(1)若f(x)≥g(x)對于公共定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(2)設h(x)有兩個極值點x1 , x2 , 且x1∈(0, ),若h(x1)﹣h(x2)>m恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙兩車由同一起點同時出發(fā),并沿同一路線(假定為直線)行駛.甲車、乙車的速度曲線分別為V和V(如圖所示).那么對于圖中給定的t0和t1 , 下列判斷中一定正確的是(
A.在t1時刻,甲車在乙車前面
B.t1時刻后,甲車在乙車后面
C.在t0時刻,兩車的位置相同
D.t0時刻后,乙車在甲車前面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對二次函數(shù)f(x)=ax2+bx+c(a為非零整數(shù)),四位同學分別給出下列結論,其中有且只有一個結論是錯誤的,則錯誤的結論是(
A.﹣1是f(x)的零點
B.1是f(x)的極值點
C.3是f(x)的極值
D.點(2,8)在曲線y=f(x)上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函數(shù)f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)證明:對一切x∈(0,+∞),都有l(wèi)nx> 成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+ )??
B.y=2sin(2x+ )??
C.y=2sin( )??
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍;

(2)當時,分別求函數(shù)的最小值和的最大值,并證明當時, 成立;

(3)令,當時,判斷函數(shù)有幾個不同的零點并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義平面向量之間的一種運算“⊙”如下:對任意的 ,令 ,下面說法錯誤的是(
A.若 共線,則 =0
B. =
C.對任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

同步練習冊答案