【題目】如圖,在直角梯形中,,,,,的中點,的交點.將沿折起到的位置,如圖

)證明:平面;

)若平面平面,求平面與平面夾角的余弦值.

【答案】)證明見解析;(

【解析】

試題()先證,,再可證平面,進而可證平面;()先建立空間直角坐標系,再算出平面和平面的法向量,進而可得平面與平面夾角的余弦值.

試題解析:()在圖1中,

因為,,的中點,,所以

即在圖2中,,

從而平面

,所以平面

)由已知,平面平面,又由()知,,

所以為二面角的平面角,所以

如圖,以為原點,建立空間直角坐標系,

因為,

所以

,

設平面的法向量,平面的法向量,平面與平面夾角為,

,得,取,

,得,取,

從而,

即平面與平面夾角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,分別是橢圓的左頂點和上頂點,為其右焦點,,且該橢圓的離心率為;

1)求橢圓的標準方程;

2)設點為橢圓上的一動點,且不與橢圓頂點重合,點為直線軸的交點,線段的中垂線與軸交于點,若直線斜率為,直線的斜率為,且為坐標原點),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間與極值;

2)當函數(shù)有兩個極值點時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的最大值;

2)若只有一個極值點.

i)求實數(shù)的取值范圍;

ii)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,離心率為,過作直線與橢圓交于,兩點,的周長為8

1)求橢圓的標準方程;

2)問:的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校準備將名同學全部分配到運動會的田徑、拔河和球類個不同項目比賽做志愿者,每個項目至少 名,則不同的分配方案有________種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導函數(shù).

1)證明:在定義域上存在唯一的極大值點;

2)若存在,使,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線準線為,焦點為,點是拋物線上位于第一象限的動點,直線為坐標原點)交點,直線交拋物線、兩點,為線段中點.

1)若,求直線的方程;

2)試問直線的斜率是否為定值,若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列,定義為數(shù)列的一階差分數(shù)列,其中

1)若,試判斷是否是等差數(shù)列,并說明理由;

2)若,,求數(shù)列的通項公式;

3)對(2)中的數(shù)列,是否存在等差數(shù)列,使得對一切都成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案