14.若集合A={2,3,4},B={x|x=m+n,m,n∈A,m≠n),則集合B的非空子集的個數(shù)是7.

分析 根據(jù)題意,用列舉法表示集合B,可得集合B中元素的個數(shù),進而由集合的元素數(shù)目與非空子集數(shù)目的關(guān)系,計算可得答案.

解答 解:集合A={2,3,4},B={x|x=m+n,m,n∈A,m≠n)={5,6,7},
則集合B的非空子集的個數(shù)是23-1=7,
故答案為:7.

點評 本題考查集合的元素數(shù)目與子集數(shù)目的關(guān)系,若集合中有n個元素,則其有2n-1個非空子集.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知圓x2+y2+2x-3=0和直線y=2x+b.
(1)討論b怎么決定直線和圓的位置關(guān)系的;
(2)若b=-2,則直線與圓是否相交?若相交,請計算出弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知不等式|x+1|+|x-1|<8的解集為A.
(1)求集合A;
(2)若?a,b∈A,x∈(0,+∞),不等式a+b<x+$\frac{9}{x}$+m恒成立,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-1|+|x-2|+|x-a|.
(I)當a=1時,解不等式f(x)≤2;
(Ⅱ)當a=3時,若f(x)≥m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.制作一個面積為1m2,形狀為直角三角形的鐵架框,有下列四種長度的鐵管供選擇,較經(jīng)濟的(夠用,又耗材最少)是(  )
A.4.6 mB.4.8 mC.5 mD.5.2 m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=a(x-lnx)-lnx-$\frac{1}{x}$(其中a∈R).
(Ⅰ)當a=2時,求函數(shù)f(x)的極值;
(Ⅱ)若不等式f(x)≤1在區(qū)間[1,e]上恒成立,求a的取值范圍(其中e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若一個圓錐的側(cè)面積是底面積的2倍,則圓錐側(cè)面展開圖的扇形的圓心角為180°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2t}\\{y=4{t}^{2}}\end{array}\right.$(t為參數(shù)),直線l:x-y-1=0.
(1)求曲線C上的點到直線l的距離的最小值;
(2)過點M(0,2)與直線l平行的直線l′與曲線C交于A、B兩點,試求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,AB是⊙O的直徑,PA⊥⊙O所在的平面,C是圓上一點,∠ABC=30°,PA=AB.
(1)求證:平面PAC⊥平面PBC;
(2)求二面角A-PB-C的正弦值.

查看答案和解析>>

同步練習冊答案