12.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},則M∩N等于( 。
A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}

分析 由不等式和交集的定義,即可得到所求M∩N.

解答 解:M={x|-3<x<1},N={-3,-2,-1,0,1},
則M∩N={x|-3<x<1}∩{-3,-2,-1,0,1}={-2,-1,0}.
故選:C.

點評 本題考查集合的交集運算,注意運用定義法,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,向一個圓臺型容器(下底比上底口徑寬)勻速注水(單位時間注水體積相同),注滿為止,設(shè)已注入的水體積為v,高度為h,時間為t,則下列反應(yīng)變化趨勢的圖象正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)P,Q分別是圓x2+(y-1)2=3和橢圓$\frac{x^2}{4}+{y^2}=1$上的點,則P,Q兩點間的最大距離是$\frac{7\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等比數(shù)列{an}的前n項和為Sn,若a2+S3=0,則公比q=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某幾何體的三視圖如圖所示,則其體積為( 。
A.$2\sqrt{3}$B.$\frac{{5\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l的方程為3x+4y-25=0,則圓x2+y2=1上的點到直線l的最大距距離是(  )
A.1B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知|2x-1|+(y+2)2=0,則(xy)2016=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(Ⅰ)請默寫兩角和與差的余弦公式(C(α+β),C(α-β)),并用公式C(α-β)證明公式C(α+β)C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.
(Ⅱ)在平面直角坐標(biāo)系中,兩點A(x1,y1),B(x2,y2)間的距離公式是:$|{AB}|=\sqrt{{{({{x_2}-{x_1}})}^2}+{{({{y_2}-{y_1}})}^2}}$,如圖,點A(1,0),P1(cosα,sinα),P2(cos(-β),sin(-β)),P(cos(α+β),sin(α+β)),請從這個圖出發(fā),推導(dǎo)出兩角和的余弦公式(C(α+β))(注:不能用向量方法).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={1,2,3},B={2,3},則A∪B=( 。
A.{2}B.{3}C.{2}D.{1,2,3}

查看答案和解析>>

同步練習(xí)冊答案