精英家教網 > 高中數學 > 題目詳情
15、f(x)是定義域在R上的函數,已知:f(x+y)=f(x)+f(y)對于任意x,y∈R都成立.
(1)求f(0)的值;
(2)求證:判斷f(x)的奇偶性并證明你的結論.
分析:對于抽象函數的求解策略和方法為賦值法,(1)令x=y=0,代入已知條件,即可求得結果;
(2)令y=-x,代入已知條件即可判定函數的奇偶性.
解答:解:(1)∵f(x+y)=f(x)+f(y)對于任意x,y∈R都成立.
令x=y=0,則f(0)=f(0)+f(0)
解得f(0)=0;
(2)函數f(x)是R上的奇函數.
證明:令y=-x,則f(0)=f(x)+f(-x)=0,
∴f(-x)=-f(x),
∴函數f(x)是R上的奇函數.
點評:本題考查抽象函數的有關問題,其中賦值法是常用的方法,考查函數的奇偶性的定義,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

18、已知f(x)是定義域在R上的函數,且有下列三個性質:
①函數圖象的對稱軸是x=1;
②在(-∞,0)上是減函數;
③有最小值是-3;
請寫出上述三個條件都滿足的一個函數
y=(x-1)2-3

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)的定義域為R,若存在常數M>0,使|f(x)|≤M|x|對一切實數均成立,則稱f(x)為虛界函數,給出下列函數:
①f(x)=0;
②f(x)=x2;
③f(x)=sinx+cosx;
④f(x)=
xx2+x+1
;
⑤f(x)是定義域在R上的奇函數,且滿足對一切實數均有|f(x1)-f(x2)|≤|x1-x2|.
其中是虛界函數的序號為
①④⑤
①④⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義域在R上的偶函數,且在區(qū)間(-∞,0)上單調遞減,求滿足f(x2+2x+3)>f(-x2-4x-5)的x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)是定義域在R,并且滿足f(x+y)=f(x)+f(y),f(
13
)=1
,且當x>0時,f(x)>0.
(1)求f(0)的值;                
(2)判斷函數的奇偶性;
(3)試判斷函數的單調性,并求解不等式f(x)+f(2+x)<2.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域在R上的函數,f(2+x)=-f(2-x),f(x+2)=-
1f(x)

(1)函數f(x)是不是周期函數,若是,求出周期;
(2)判斷f(x)的奇偶性.

查看答案和解析>>

同步練習冊答案