分析 (1)由橢圓定義可得:4a=$4\sqrt{3}$,離心率計(jì)算公式$e=\frac{c}{a}=\frac{c}{{\sqrt{3}}}=\frac{{\sqrt{6}}}{3}$,及其$b=\sqrt{{a}^{2}-{c}^{2}}$,即可得出.
(2)直線(xiàn)方程與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式、等腰三角形的性質(zhì)即可得出.
解答 解:(1)由橢圓定義知,$4a=4\sqrt{3},a=\sqrt{3}$,
由$e=\frac{c}{a}=\frac{c}{{\sqrt{3}}}=\frac{{\sqrt{6}}}{3}$,得c=$\sqrt{2}$,$b=\sqrt{{a}^{2}-{c}^{2}}$=1.
橢圓C的方程為$\frac{x^2}{3}+{y^2}=1$.
(2)由方程組$\left\{\begin{array}{l}y=\frac{{\sqrt{3}}}{3}x+m\\ \frac{x^2}{3}+{y^2}=1\end{array}\right.⇒2{x^2}+2\sqrt{3}mx+3({{m^2}-1})=0$,
設(shè)M(x1,y1),N(x2,y2),MN的中點(diǎn)為E(x0,y0),
則${x_1}+{x_2}=-\sqrt{3}m$.
∴${x_0}=\frac{{{x_1}+{x_2}}}{2}=-\frac{{\sqrt{3}}}{2}m,{y_0}=\frac{m}{2}$
∴$E({-\frac{{\sqrt{3}}}{2}m,\frac{m}{2}})$
由|PM|=|PN|得PE⊥MN,又P(0,-1)
∴${k_{PE}}×\frac{{\sqrt{3}}}{3}=-1$,
∴m=1.
滿(mǎn)足△=12m2-24(m2-1)>0.
綜上m=1.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線(xiàn)與橢圓相交問(wèn)題、一元二次方程的根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式、等腰三角形的性質(zhì)、相互垂直的直線(xiàn)斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 120 | C. | 720 | D. | 1440 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
P(K2≥k) | 0.500 | 0.100 | 0.050 | 0.010 | 0.001 |
k | 0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[25,30] | 2 | 0.10 |
(30,35] | 4 | 0.20 |
(35,40] | 5 | 0.25 |
(40,45] | m | fm |
(45,50] | n | fn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com