3.已知函數(shù)f(x)的定義域為D,若存在區(qū)間[m,n]⊆D使得f(x):
(Ⅰ)f(x)在[m,n]上是單調函數(shù);
(Ⅱ)f(x)在[m,n]上的值域是[2m,2n],
則稱區(qū)間[m,n]為函數(shù)f(x)的“倍值區(qū)間”.
下列函數(shù)中存在“倍值區(qū)間”的有①②④(填上所有你認為正確的序號)
①f(x)=x2; ②$f(x)=\frac{1}{x}$;③$f(x)=x+\frac{1}{x}$;   ④$f(x)=\frac{3x}{{{x^2}+1}}$.

分析 函數(shù)中存在“倍值區(qū)間”,則:①f(x)在[m,n]內是單調函數(shù),②$\left\{\begin{array}{l}{f(m)=2m}\\{f(n)=2n}\end{array}\right.或\left\{\begin{array}{l}{f(m)=2n}\\{f(n)=2m}\end{array}\right.$,對四個函數(shù)的單調性分別研究,從而確定是否存在“倍值區(qū)間”.

解答 解:函數(shù)中存在“倍值區(qū)間”,則:①f(x)在[m,n]內是單調函數(shù),②$\left\{\begin{array}{l}{f(m)=2m}\\{f(n)=2n}\end{array}\right.或\left\{\begin{array}{l}{f(m)=2n}\\{f(n)=2m}\end{array}\right.$,
①f(x)=x2,若存在“倍值區(qū)間”[m,n],$\left\{\begin{array}{l}{f(m)=2m}\\{f(n)=2n}\end{array}\right.$⇒$\left\{\begin{array}{l}{{m}^{2}=2m}\\{{n}^{2}=2n}\end{array}\right.$⇒$\left\{\begin{array}{l}{m=0}\\{n=2}\end{array}\right.$,∴f(x)=x2,存在“倍值區(qū)間”[0,2];
②f(x)=$\frac{1}{x}$(x∈R),若存在“倍值區(qū)間”[m,n],當x>0時,$\left\{\begin{array}{l}{\frac{1}{m}=2n}\\{\frac{1}{n}=2m}\end{array}\right.$⇒mn=$\frac{1}{2}$,故只需mn=$\frac{1}{2}$即可,故存在;
③$f(x)=x+\frac{1}{x}$;當x>0時,在區(qū)間[0,1]上單調遞減,在區(qū)間[1,+∞)上單調遞增,若存在“倍值區(qū)間”[m,n]⊆[0,1]⇒m+$\frac{1}{m}$=2n,n+$\frac{1}{n}$=2m⇒m2-2mn+1=0.n2-2mn+1=0
⇒m2=n2不符題意;若存在“倍值區(qū)間”[m,n]⊆[1,+∞)⇒m+$\frac{1}{m}$=2m,n+$\frac{1}{n}$=2n⇒m2=n2=1不符題意,故此函數(shù)不存在“倍值區(qū)間“;
④$f(x)=\frac{3x}{{{x^2}+1}}$.$f′(x)=\frac{3(1-x)(1+x)}{({x}^{2}+1)}$,當x∈[0,1]時,f′(x)>0,當x∈[1,+∞)時,f′(x)<0,在區(qū)間[0,1]上單調遞增,在區(qū)間[1,+∞)上單調遞減,
若存在“倍值區(qū)間”[m,n]⊆[0,1],$\frac{3m}{{m}^{3}+1}=2m.\frac{3n}{{n}^{2}+1}=2n$,∴m=0,n=$\frac{\sqrt{2}}{2}$,即存在“倍值區(qū)間”[0,$\frac{\sqrt{2}}{2}$];
故答案為:①②④

點評 本題考查新定義,考查學生分析解決問題的能力,涉及到大量的函數(shù)知識及計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知曲線f(x)=(x2-2x)lnx,則過f(x)上的一點(1,f(1))的切線方程為( 。
A.x+y+1=0B.x-y+1=0C.x+y-1=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=log2(1-x)-log2(1+x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)求使f(x)>0的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若a<0,b>0,則下列不等式恒成立的是( 。
A.a2<b2B.$\sqrt{-a}<\sqrt$C.$\frac{1}{a}<\frac{1}$D.$\frac{a}$+$\frac{a}$≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)y=f(x)是奇函數(shù).若當x>0時,f(x)=x+lgx,則當x<0時,f(x)=x-lg(-x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設常數(shù)a≠0,函數(shù)$f(x)=lg\frac{x+1-2a}{x+1+3a}$.
(1)當a=1時,判斷并證明函數(shù)y=f(x)在(1,+∞)上的單調性.
(2)是否存在實數(shù)a,使函數(shù)y=f(x)為奇函數(shù)或偶函數(shù)?若存在,求出a的值,并判斷相應的y=f(x)的奇偶性;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+ax2-1,且f'(1)=-1.
(1)求a的值;
(2)若對于任意x∈(0,+∞),都有f(x)-mx≤-1,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.任意a∈R,曲線y=ex(x2+ax+1-2a)在點P(0,1-2a)處的切線l與圓C:x2+2x+y2-12=0的位置關系是( 。
A.相交B.相切C.相離D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知F1,F(xiàn)2分別是雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a,b>0)$的兩個焦點,過其中一個焦點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓內,則雙曲線離心率的取值范圍是(  )
A.(1,2)B.(2,+∞)C.$(1,\;\sqrt{2})$D.$(\sqrt{2},\;+∞)$

查看答案和解析>>

同步練習冊答案