已知△ABC的三個內(nèi)角A、B、C的對邊分別為a、b、c,且b2+c2=a2-bc,
(Ⅰ)求:2sinBcosC-sin(B-C)的值;
(Ⅱ)若b+c=2,設(shè)BC的中點(diǎn)為E,求線段AE長度的最小值.

解:(I)∵b2+c2=a2-bc,∴a2=b2+c2+bc,
結(jié)合余弦定理知cosA===-
又A∈(0,π),∴A=
∴B+C=
∴2sinBcosC-sin(B-C)=sinBcosC+cosBsinC
=sin(B+C)=sin=;
(II)根據(jù)題意知=+
2=2+2+2
=[c2+b2+2bc×(-)]=[(c+b)2-3bc]=(4-3bc)
=1
∴bc≤1(當(dāng)且僅當(dāng)b=c=1時等號成立)
∴(2min=(4-3)=
∴||min=
分析:(I)根據(jù)余弦定理表示出cosA,把已知得等式變形后代入即可求出cosA的值,由A的范圍,利用特殊角的三角函數(shù)值即可求出A的度數(shù),然后把所求的式子利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡,將sinA的值代入即可求出值;
(II)首先根據(jù)條件得出=+)進(jìn)而得出=(4-3bc),然后根據(jù)均值不等式得出bc≤1,即可求出結(jié)果.
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用余弦定理化簡求值,靈活運(yùn)用兩角和與差的正弦函數(shù)公式化簡求值,掌握正弦函數(shù)的值域,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)的A、B、C及平面內(nèi)一點(diǎn)P滿足
PA
+
PB
+
PC
=
AB
,下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P,若
PA
+
PB
+
PC
=
AB
,則點(diǎn)P與△ABC的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)ABC及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ滿足:
AB
+
AC
=λ
AP
,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知△ABC的三個頂點(diǎn)坐標(biāo)分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過橢圓
x2
16
+
y2
4
=1
內(nèi)一點(diǎn)M(2,1)引一條弦,使得弦被M點(diǎn)平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)A,B,C及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ 滿足:
AB
+
AC
AP
,則λ的值為( 。
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步練習(xí)冊答案