18.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2}{1-i}$-2對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)$\frac{2}{1-i}$-2=$\frac{2(1+i)}{(1-i)(1+i)}$-2=-1+i對應(yīng)的點(-1,1)位于第二象限.
故選:B.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在${(x+\frac{2}{x^2})^6}$的展開式中,常數(shù)項為60.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知一幾何體的三視圖如下,則該幾何體的表面積為3+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知極坐標(biāo)系的極點在平面直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,且長度單位相同,直線l的極坐標(biāo)方程為:ρ=$\frac{5}{sin(θ-\frac{π}{3})}$,點P(2cosα,2sinα+2),參數(shù)α∈R.
(Ⅰ)求點P軌跡的直角坐標(biāo)方程;
(Ⅱ)求點P到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2}{1-i}$-2i2對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.為了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方式從該校的A,B兩班中各抽5名學(xué)生進(jìn)行視力檢測,檢測的數(shù)據(jù)如下:
A班5名學(xué)生的視力檢測結(jié)果:4.3,5.1,4.6,4.1,4.9.
B班5名學(xué)生的視力檢測結(jié)果:5.1,4.9,4.0,4.0,4.5.
(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪個班的學(xué)生視力較好?并計算A班5名學(xué)生視力的方差;
(2)現(xiàn)從B班的上述5名學(xué)生中隨機(jī)選取2名,求這2名學(xué)生中至少有1名學(xué)生的視力低于4.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線y=k(x-1)及拋物線y2=2x,則( 。
A.直線與拋物線有且只有一個公共點B.直線與拋物線有兩個公共點
C.直線與拋物線有一個或兩個公共點D.直線與拋物線可能沒有公共點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點E為棱AB的中點.
求:(1)點C到面BC1D的距離;
(2)D1E與平面BC1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC的內(nèi)角A,B,C的對邊a,b,c滿足a2+ac=b2
(Ⅰ)求A的取值范圍;
(Ⅱ)若a=2,A=$\frac{π}{6}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案