分析 (1)求出函數(shù)f(x)的定義域與 f′(x),通過當a<0時,當a>0時,判斷導函數(shù)的符號,推出單調(diào)性與極值.
(2)化簡g(x),求出g′(x),利用g(x)在區(qū)間(a,3)上有最值,說明g(x)在區(qū)間(a,3)上有極值,方程g'(x)=0在(a,3)上有一個或兩個不等實根,列出不等式組,轉(zhuǎn)化為對任意a∈[1,2],g′(a)=3a2+(m+2a)a-1=5a2+ma-1<0恒成立,得到m<$\frac{1-5{a}^{2}}{a}$=$\frac{1}{a}-5a$,然后求解即可.
解答 解:(1)由已知得f(x)的定義域為(0,+∞),且 f′(x)=$\frac{1}{x}$-a,…(2分)
當a<0時,$f'(x)=\frac{1}{x}-a>0$,
∴f(x)在(0,+∞)單調(diào)增,f(x)無極值;…(3分)
當a>0時,
由$f'(x)=\frac{1}{x}-a>0得:0<x<\frac{1}{a}$,由$f'(x)=\frac{1}{x}-a<0得:x>\frac{1}{a}$,
∴$f(x)在(0,\frac{1}{a})上單調(diào)遞增,在(\frac{1}{a},+∞)上單調(diào)遞減$.…(4分)
∴$f(x)的極大值f(\frac{1}{a})=-(lna+4)$,無極小值. …(5分)
綜上:當a<0時,f(x)無極值;
當a>0時,$f(x)有極大值f(\frac{1}{a})=-(lna+4)$,無極小值. …(6分)
(2)g(x)=x3+$\frac{{x}^{2}}{2}$[m-2f′(x)]=x3+($\frac{m}{2}$+a)x2-x,
∴g′(x)=3x2+(m+2a)x-1,
∵g(x)在區(qū)間(a,3)上有最值,
∴g(x)在區(qū)間(a,3)上有極值,即方程g'(x)=0在(a,3)上有一個或兩個不等實根,
又g′(0)=-1,∴$\left\{\begin{array}{l}{g′(a)<0}\\{g′(3)>0}\end{array}\right.$,…(9分)
由題意知:對任意a∈[1,2],g′(a)=3a2+(m+2a)a-1=5a2+ma-1<0恒成立,
∴m<$\frac{1-5{a}^{2}}{a}$=$\frac{1}{a}-5a$,因為a∈[1,2],∴m<$-\frac{19}{2}$
對任意a∈[1,2],g′(3)=26+3m+6a>0恒成立
∴m>$\frac{-6a-26}{3}$=$-\frac{26}{3}-2a$,
∵a∈[1,2],∴m>-$\frac{32}{3}$,
∴-$\frac{32}{3}<m<-\frac{19}{2}$.…(12分)
點評 本題考查函數(shù)的導數(shù)的綜合應用,函數(shù)恒成立,考查分類討論思想以及轉(zhuǎn)化思想的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 重合 | B. | 形狀相同,位置不同 | ||
C. | 關(guān)于y軸對稱 | D. | 形狀不同,位置不同 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1)和(3) | B. | (2)和(5) | C. | (1)和(4) | D. | (2)和(4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2+2$\sqrt{2}$ | B. | 2$\sqrt{2}$-2 | C. | $\sqrt{5}$+2 | D. | $\sqrt{5}$-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com