1.已知函數(shù)f(x)=cos(x-$\frac{π}{3}$)+2sin2$\frac{x}{2}$,x∈R.
(1)求函數(shù)f(x)的值域;
(2)記△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,若f(B)=1,b=1,c=$\sqrt{3}$,求a的值.

分析 (1)由兩角差的余弦公式及半角公式將f(x)化簡,求得f(x)的解析式,根據(jù)正弦函數(shù)圖象及性質(zhì),即可求得函數(shù)f(x)的值域;
(2)由(1)可知,將f(B)=1,代入即可求得B=$\frac{π}{6}$,根據(jù)余弦定理b2=a2+c2-2accosB,代入即可求得a的值.

解答 解:(1)f(x)=cos(x-$\frac{π}{3}$)+2sin2$\frac{x}{2}$,
=cosxcos$\frac{π}{3}$+sinxsin$\frac{π}{3}$+1-cosx,
=$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}$cosx+1,
=sin(x-$\frac{π}{6}$)+1,
由正弦函數(shù)性質(zhì)可知sin(x-$\frac{π}{6}$)的值域為[-1,1],
函數(shù)f(x)的值域[0,2];
(2)f(B)=1,即sin(B-$\frac{π}{6}$)=0,
∵0<B<π,
∴B=$\frac{π}{6}$,
由余弦定理可知:b2=a2+c2-2accosB,
∴1=a2+3-2×a×$\sqrt{3}$×$\frac{\sqrt{3}}{2}$,整理得:a2-3a+2=0,
解得:a=1或a=2,
∴a=1或a=2.

點評 本題考查三角函數(shù)在恒等變換中的應(yīng)用,考查余弦定理在解三角形中的應(yīng)用,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)A={x|x2+ax+b=0},B={x|x2+cx+15=0}.若A∩B={3},A∪B={1,3,5},試求實數(shù)a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a∈R).
(Ⅰ)當a=0時,求f(x)的極值;
(Ⅱ)對?a∈(-3,-2),若存在x1,x2∈[1,2],使不等式|f(x1)-f(x2)|>(m-2+ln2)a-2ln2恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.橢圓$\frac{x^2}{16}$+$\frac{y^2}{25}$=1的離心率為( 。
A.$\frac{4}{5}$B.$\frac{5}{4}$C.$\frac{3}{5}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A(4,0),B(2,2)為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1內(nèi)的點,M是橢圓上的動點,則|MA|+|MB|的最小值是( 。
A.10+2$\sqrt{10}$B.10+$\sqrt{10}$C.10-2$\sqrt{10}$D.10-$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知二階矩陣$M=[{\begin{array}{l}a&1\\ 1&b\end{array}}]$屬于特征值λ=5的一個特征向量為$\overrightarrow{e}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,則a+b=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓C與直線y=-x+2$\sqrt{2}$相切,圓心在x軸上,且該圓被直線y=x截得的弦長為4$\sqrt{2}$.
(1)求圓C的方程;
(2)過點N(-1,0)作斜率為k(k≠0)的直線l與圓C交于A,B兩點.若直線OA與OB的斜率之積為-(3+$\sqrt{2}$)k2,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題p:函數(shù)y=ln(x2+3)+$\frac{1}{{ln({x^2}+3)}}$的最小值是2;命題q:x>2是x>l的充分不必要條件.則下列命題為真命題的是( 。
A.p∧qB.?p∧?qC.?p∧qD.p∧?q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.我國古代有一個“百錢買百雞”問題:用100元買100只雞,其中公雞每只5元,母雞每只3元,小雞3只一元,問能買多少只公雞?多少只母雞?多少只小雞?現(xiàn)在,設(shè)公雞、母雞的單價不變,小雞每只0.5元,請你輸入錢數(shù)和雞的總數(shù).計算出買公雞、母雞、小雞各多少只.
要求:(1)畫出程序框圖,或者用你熟悉的一種程序語言編寫程序;
(2)如果有自然數(shù)解,請輸出所有可能的結(jié)果:如果沒有自然數(shù)解,請輸出提示信息.

查看答案和解析>>

同步練習(xí)冊答案