精英家教網 > 高中數學 > 題目詳情

【題目】數列{an}是等差數列,若 <﹣1,且它的前n項和Sn有最大值,那么當Sn取的最小正值時,n=(
A.11
B.17
C.19
D.21

【答案】C
【解析】解:由題意知,Sn有最大值,所以d<0, 因為 <﹣1,所以a10>0>a11 ,
且a10+a11<0,
所以S20=10(a1+a20)=10(a10+a11)<0,
則S19=19a10>0,
又a1>a2>…>a10>0>a11>a12
所以S10>S9>…>S2>S1>0,S10>S11>…>S19>0>S20>S21
又S19﹣S1=a2+a3+…+a19=9(a10+a11)<0,
所以S19為最小正值,
故選:C.
根據題意判斷出d<0、a10>0>a11、a10+a11<0,利用前n項和公式和性質判斷出S20<0、S19>0,再利用數列的單調性判斷出當Sn取的最小正值時n的值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】《中國詩詞大會》(二季)亮點頗多,十場比賽每場都有一首特別設計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2cos(ωx+ )(其中ω>0,x∈R)的最小正周期為10π.
(1)求ω的值;
(2)設α,β∈[0, ],f(5α+ )=﹣ ,f(5β﹣ )= ,求cos(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等差數列{an}的前m項和為30,前2m項和為100,則它的前3m項和為(
A.130
B.170
C.210
D.260

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列判斷:
①從個體編號為1,2,…,1000的總體中抽取一個容量為50的樣本,若采用系統(tǒng)抽樣方法進行抽取,則分段間隔應為20;
②已知某種彩票的中獎概率為 ,那么買1000張這種彩票就一定會中獎(假設該彩票有足夠的張數);
③從裝有2個紅球和2個黒球的口袋內任取2個球,恰有1個黒球與恰有2個黒球是互斥但不對立的兩個事件;
④設具有線性相關關系的變量的一組數據是(1,3),(2,5),(3,6),(6,8),則它們的回歸直線一定過點(3, ).
其中正確的序號是( )
A.①、②、③
B.①、③、④
C.③、④
D.①、③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產品的新、舊網箱養(yǎng)殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg), 其頻率分布直方圖如下:

(1) 記A表示事件舊養(yǎng)殖法的箱產量低于50kg,估計A的概率;

(2) 填寫下面列聯(lián)表,并根據列聯(lián)表判斷是否有99%的把握認為箱產量與養(yǎng)殖方法有關:

箱產量<50kg

箱產量50kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3) 根據箱產量的頻率分布直方圖,對兩種養(yǎng)殖方法的優(yōu)劣進行較。

附:

P(

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的短軸長為,橢圓上任意一點到右焦點距 離的最大值為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過點作直線與曲線交于兩點,點滿足為坐標原點),求四邊形面積的最大值,并求此時的直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(2cos2x,sinx), =(1,2cosx). (Ⅰ)若 且0<x<π,試求x的值;
(Ⅱ)設f(x)= ,試求f(x)的對稱軸方程和對稱中心.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在菱形中, 相交于點, 平面,

(I)求證: 平面

(II)當直線與平面所成的角為時,求二面角的余弦角.

查看答案和解析>>

同步練習冊答案