【題目】已知向量 =(2cos2x,sinx), =(1,2cosx). (Ⅰ)若 ⊥ 且0<x<π,試求x的值;
(Ⅱ)設(shè)f(x)= ,試求f(x)的對(duì)稱軸方程和對(duì)稱中心.
【答案】解:(Ⅰ)∵ ⊥ .∴ =2cos2x+2sinxcosx
=cos2x+sin2x+1
= sin(2x+ )+1
=0,
∵0<x<π,
∴2x+ ∈( , ),
∴2x+ = 或 ,
∴x= 或 .
(Ⅱ)∵f(x)= sin(2x+ )+1,
令2x+ =kπ+ ,k∈Z,可得x= + ,k∈Z,
∴對(duì)稱軸方程為x= + ,k∈Z,
令2x+ =kπ,k∈Z,可得x= ﹣ ,k∈Z,
∴對(duì)稱中心為( ﹣ ,1)k∈Z
【解析】(Ⅰ)由 ⊥ 可得 sin(2x+ )+1=0,又0<x<π,從而可求得x的值;(Ⅱ)由f(x)= sin(2x+ )+1,由2x+ =kπ+ ,k∈Z,可求得其對(duì)稱軸方程;由2x+ =kπ,k∈Z,可求其對(duì)稱中心的橫坐標(biāo),繼而可得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦函數(shù)的對(duì)稱性的相關(guān)知識(shí),掌握正弦函數(shù)的對(duì)稱性:對(duì)稱中心;對(duì)稱軸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)單位有職工800人,期中具有高級(jí)職稱的160人,具有中級(jí)職稱的320人,具有初級(jí)職稱的200人,其余人員120人.為了解職工收入情況,決定采用分層抽樣的方法,從中抽取容量為40的樣本.則從上述各層中依次抽取的人數(shù)分別是( )
A.12,24,15,9
B.9,12,12,7
C.8,15,12,5
D.8,16,10,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項(xiàng)和Sn有最大值,那么當(dāng)Sn取的最小正值時(shí),n=( )
A.11
B.17
C.19
D.21
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三角形ABC的邊長(zhǎng)為2,D、E、F分別在三邊AB,BC和CA上,且D為AB的中點(diǎn),∠EDF=90°,∠BDE=θ(0°<θ<90°).
(1)當(dāng)tan∠DEF= 時(shí),求θ的大;
(2)求△DEF的面積S的最小值及使得S取最小值時(shí)θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x),將f(x)圖像沿x軸向右平移 個(gè)單位,然后把所得到圖像上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,這樣得到的曲線與y=2sin(x﹣ )的圖像相同,那么y=f(x)的解析式為( )
A.f(x)=2sin(2x﹣ )
B.f(x)=2sin(2x﹣ )
C.f(x)=2sin(2x+ )
D.f(x)=2sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求b的值;
(2)用定義法證明函數(shù)f(x)在R上是減函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l⊥平面α,垂足為O,已知△ABC中,∠ABC為直角,AB=2,BC=1,該直角三角形做符合以下條件的自由運(yùn)動(dòng):(1)A∈l,(2)B∈α.則C、O兩點(diǎn)間的最大距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠利用輻射對(duì)食品進(jìn)行滅菌消毒,現(xiàn)準(zhǔn)備在該廠附近建一職工宿舍,并對(duì)宿舍進(jìn)行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費(fèi)用p(萬(wàn)元)和宿舍與工廠的距離x(km)的關(guān)系為:p= (0≤x≤8),若距離為1km時(shí),宿舍建造費(fèi)用為100萬(wàn)元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購(gòu)置修路設(shè)備需5萬(wàn)元,鋪設(shè)路面每公里成本為6萬(wàn)元,設(shè)f(x)為建造宿舍與修路費(fèi)用之和.
(1)求f(x)的表達(dá)式,并寫出其定義域;
(2)宿舍應(yīng)建在離工廠多遠(yuǎn)處,可使總費(fèi)用f(x)最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:x∈R,都有ax2>﹣ax﹣1(a≠0)恒成立;命題q:圓x2+y2=a2與圓(x+3)2+(y﹣4)2=4外離.如果命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com