分析 (1)求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為a≤$\frac{1}{x}$在(0,4]恒成立,求出a的范圍即可;
(2)求出f(x)的導(dǎo)數(shù),通過(guò)討論m的范圍,得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.
解答 解:(1)f′(x)=$\frac{{e}^{ax}(ax-1)}{{x}^{2}}$,
若f(x)在(0,4]上是減函數(shù),
只需ax-1≤0在(0,4]恒成立,
即a≤$\frac{1}{x}$在(0,4]恒成立,
∴a≤$\frac{1}{4}$;
(2)a=1時(shí),f(x)=$\frac{{e}^{x}}{x}$,f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,
∴f(x)在(-∞,0),(0,1)遞減,在(1,+∞)遞增,
①0<m<1時(shí),2<m+2<3,
∴f(x)在[m,1)遞減,在(1,+m+2]遞增,
∴f(x)min=f(1)=e;
②m≥1時(shí),f(x)在[m,m+2]遞增,
∴f(x)min=f(m)=$\frac{{e}^{m}}{m}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{7}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{7}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 由f(x1)=f(x2)=1可得x1-x2是π的整數(shù)倍 | |
B. | y=f(x)的表達(dá)式可改寫(xiě)成$y=3cos(2x+\frac{π}{6})+1$ | |
C. | y=f(x)的圖象關(guān)于點(diǎn)$(\frac{π}{6},1)$對(duì)稱(chēng) | |
D. | y=f(x)的圖象關(guān)于直線$x=\frac{3}{4}π$對(duì)稱(chēng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 使用了歸納推理 | B. | 使用了類(lèi)比推理 | ||
C. | 使用了“三段論”,但大前提錯(cuò)誤 | D. | 使用了“三段論”,但小前提錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com