19.已知$f(x)=\frac{{{e^{ax}}}}{x}$(其中e=2.718…).
(1)若f(x)在(0,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求函數(shù)f(x)在[m,m+2](m>0)上的最小值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為a≤$\frac{1}{x}$在(0,4]恒成立,求出a的范圍即可;
(2)求出f(x)的導(dǎo)數(shù),通過(guò)討論m的范圍,得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.

解答 解:(1)f′(x)=$\frac{{e}^{ax}(ax-1)}{{x}^{2}}$,
若f(x)在(0,4]上是減函數(shù),
只需ax-1≤0在(0,4]恒成立,
即a≤$\frac{1}{x}$在(0,4]恒成立,
∴a≤$\frac{1}{4}$;
(2)a=1時(shí),f(x)=$\frac{{e}^{x}}{x}$,f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,
∴f(x)在(-∞,0),(0,1)遞減,在(1,+∞)遞增,
①0<m<1時(shí),2<m+2<3,
∴f(x)在[m,1)遞減,在(1,+m+2]遞增,
∴f(x)min=f(1)=e;
②m≥1時(shí),f(x)在[m,m+2]遞增,
∴f(x)min=f(m)=$\frac{{e}^{m}}{m}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.解關(guān)于x的不等式mx2-(m+2)x+m+1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C焦點(diǎn)在x軸上,中心在原點(diǎn),長(zhǎng)軸長(zhǎng)為4,離心率$\frac{\sqrt{3}}{2}$,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn).
(1)若P是第一象限內(nèi)橢圓C上的一點(diǎn),$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求點(diǎn)P的坐標(biāo);
(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為作標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點(diǎn)O,兩焦點(diǎn)F1、F2在x軸上,上頂點(diǎn)B與F1、F2圍成一個(gè)正三角,且橢圓C經(jīng)過(guò)點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓C的離心率e和標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)F2的直線l將△BF1F2平分成面積相等的兩部分,求直線l被橢圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.直線x-4y+1=0經(jīng)過(guò)拋物線y=ax2的焦點(diǎn),且此拋物線上存在一點(diǎn)P,使PA⊥PB,其中,A(0,2+m),B(0,2-m),則正數(shù)m的最小值為(  )
A.$\sqrt{7}$B.$\sqrt{5}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.關(guān)于函數(shù)$f(x)=3sin(2x-\frac{π}{3})+1(x∈R)$,下列命題正確的是( 。
A.由f(x1)=f(x2)=1可得x1-x2是π的整數(shù)倍
B.y=f(x)的表達(dá)式可改寫(xiě)成$y=3cos(2x+\frac{π}{6})+1$
C.y=f(x)的圖象關(guān)于點(diǎn)$(\frac{π}{6},1)$對(duì)稱(chēng)
D.y=f(x)的圖象關(guān)于直線$x=\frac{3}{4}π$對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)y=f(x)=2x3-3x.
(1)求y=f(x)在x=1處的切線方程;
(2)求y=f(x)在區(qū)間[-2,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.命題“有些有理數(shù)是無(wú)限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無(wú)限循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是( 。
A.使用了歸納推理B.使用了類(lèi)比推理
C.使用了“三段論”,但大前提錯(cuò)誤D.使用了“三段論”,但小前提錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx+c(ω>0,x∈R,c是實(shí)數(shù)常數(shù))的圖象上的一個(gè)最高點(diǎn)($\frac{π}{6}$,1),與該最高點(diǎn)最近的一個(gè)最低點(diǎn)是($\frac{2π}{3}$,-3)
(1)求函數(shù)f(x)的解析式
(2)在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且b2=a2+c2+accosB,角A的取值范圍是區(qū)間M,當(dāng)x∈M時(shí),試求函數(shù)f(x)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案