如圖,將正分割成16個全等的小正三角形,在每個三角形的頂點各放置一個數(shù),使位于同一直線上的點放置的數(shù)(當數(shù)的個數(shù)不少于3時)都分別依次成等差數(shù)列,若頂點處的三個數(shù)互不相同且和為1,則所有頂點的數(shù)之和      
5

試題分析:根據(jù)等差中項法分別求解n=2,3,4時的值,由此歸納出f(n)的值即可.解:由題意可得,(各點放的數(shù)用該點的坐標表示)當n=2時,根據(jù)等差數(shù)列的性質(zhì)可得,A+B=2D,A+C=2E,B+C=2F,且A+B+C=1,2(D+E+F)=2(A+B+C)=2,D+E+F=1,∴f(2)=2= ,當n=3時,根據(jù)等差數(shù)列的性質(zhì)可得,A+B=D+E,A+C=I+H,B+C=F+G,且A+B+C=1,從而可得D+E+H+I+F+F=2(A+B+C)=2,同樣根據(jù)等差中項可得,M的數(shù)為 ,所以 ,依次可知結(jié)論為,那么可知頂點處的三個數(shù)互不相同且和為1,則n=5時,所有頂點的數(shù)之和5,故答案為5.
點評:本題目主要考查了數(shù)列的通項公式的求解在實際問題中的應用,解題的關(guān)鍵是靈活利用等差中項,進行求解.考查了考試發(fā)現(xiàn)問題、解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b1(a2-a1)=b2.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cnan bn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列的前項和為,對任意的,都有,且;數(shù)列滿足.
(Ⅰ)求的值及數(shù)列的通項公式;
(Ⅱ)求證:對一切成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是等差數(shù)列的前n項和,若,則數(shù)列的通項公式為(  )
A.=2n-3B.=2n-1 C.=2n+1 D.=2n+3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè){}為等差數(shù)列,公差d = -2,為其前n項和.若,則=
A.18B.20C.22D.24

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列是等比數(shù)列,,公比的展開式中的第二項(按x的降冪排列).
(1)用表示通項與前n項和;
(2)若,用表示

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是一個等差數(shù)列,且,
①求的通項;                   ②求項和的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列的前項積為,且 .
(Ⅰ)求證數(shù)列是等差數(shù)列;
(Ⅱ)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

是等差數(shù)列,公差,的前項和,已知.
(1)求數(shù)列的通項公式;
(2)令=,求數(shù)列的前項之和.

查看答案和解析>>

同步練習冊答案