【題目】已知拋物線,過的直線與拋物線C交于兩點(diǎn),點(diǎn)A在第一象限,拋物線C兩點(diǎn)處的切線相互垂直.

1)求拋物線C的標(biāo)準(zhǔn)方程;

2)若點(diǎn)P為拋物線C上異于的點(diǎn),直線均不與軸平行,且直線APBP交拋物線C的準(zhǔn)線分別于兩點(diǎn),.

i)求直線的斜率;

(ⅱ)求的最小值.

【答案】1;(2)(i;(ⅱ)4.

【解析】

1)利用導(dǎo)數(shù)的幾何意義分別求得處切線的斜率,再根據(jù)斜率相乘為,可得的值,即可得答案;

2)(i)根據(jù)可得點(diǎn)橫坐標(biāo)的關(guān)系,再結(jié)合韋達(dá)定理,可求得斜率;

ii)由(i)易知,設(shè),則,再分別求出點(diǎn)的橫坐標(biāo)用表示,利用換元法可求得的最值.

1)設(shè).

拋物線C的方程可化為.

拋物線C兩點(diǎn)處的切線的斜率分別為.

由題可知直線l的斜率存在,故可設(shè)直線1的方程為

聯(lián)立,消去y可得,

.

,解得.

∴拋物線C的標(biāo)準(zhǔn)方程為;

2)(i)由(1)可得

,可得

又點(diǎn)A在第一象限,解得.

∴直線AB的斜率為

ii)由(i)易知.

設(shè),則.

由題可知,故.

∴直線AP的斜率,同理可得.

∴直線,當(dāng)時(shí),.

直線,當(dāng)時(shí),.

.

,

當(dāng)且僅當(dāng),即,也即時(shí),取得最小值4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處的切線方程為,求實(shí)數(shù)的值;

(2)若函數(shù)兩處取得極值,求實(shí)數(shù)的取值范圍;

(3)在(2)的條件下,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān)……”其大意為:“某人從距離關(guān)口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達(dá)關(guān)口……” 那么該人第一天走的路程為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐PABC的平面展開圖中,四邊形ABCD為邊長等于的正方形,△ABE和△BCF均為正三角形,在三棱錐PABC中:

1)證明:平面PAC⊥平面ABC;

2)若點(diǎn)M為棱PA上一點(diǎn)且,求二面角PBCM的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地網(wǎng)民瀏覽購物網(wǎng)站的情況,從該地隨機(jī)抽取100名網(wǎng)民進(jìn)行調(diào)查,其中男性、女性人數(shù)分別為4555.下面是根據(jù)調(diào)查結(jié)果繪制的網(wǎng)民日均瀏覽購物網(wǎng)站時(shí)間的頻率分布直方圖,將日均瀏覽購物網(wǎng)站時(shí)間不低于40分鐘的網(wǎng)民稱為“網(wǎng)購達(dá)人”,已知“網(wǎng)購達(dá)人”中女性有10.

1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為是否為“網(wǎng)購達(dá)人”與性別有關(guān);

非網(wǎng)購達(dá)人

網(wǎng)購達(dá)人

總計(jì)

10

總計(jì)

2)將上述調(diào)査所得到的頻率視為概率,現(xiàn)在從該地的網(wǎng)民中隨機(jī)抽取3名,記被抽取的3名網(wǎng)民中的“網(wǎng)購達(dá)人”的人數(shù)為X,求X的分布列、數(shù)學(xué)期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求證:函數(shù)有唯一零點(diǎn);

(2)若對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達(dá)到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為:為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)P的直角坐標(biāo)為,若直線l與曲線C分別相交于AB兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),證明:;

2)若只有一個(gè)零點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊答案