由平面α外一點P引平面的三條相等的斜線段,斜足分別為A、B、C,O為△ABC的外心,求證:OP⊥α.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在斜三棱柱中,側(cè)面⊥底面,側(cè)棱與底面成60°的角,.底面是邊長為2的正三角形,其重心為點,是線段上一點,且.
(1)求證://側(cè)面;
(2)求平面與底面所成銳二面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖五面體中,四邊形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分別為AE、BD、EF的中點.
(1)求證:PQ∥平面BCE;
(2)求證:AM⊥平面ADF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知如圖①所示,矩形紙片AA′A1′A1,點B、C、B1、C1分別為AA′、A1A1′的三等分點,將矩形紙片沿BB1、CC1折成如圖②形狀(正三棱柱),若面對角線AB1⊥BC1,求證:A1C⊥AB1.
(圖①)
(圖②)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB、CD均為圓O的直徑,CE⊥圓O所在的平面,BF∥CE.求證:
(1)平面BCEF⊥平面ACE;
(2)直線DF∥平面ACE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐PABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD.若E、F分別為PC、BD的中點,求證:
(1)EF∥平面PAD;
(2)EF⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,E,F,G,M,N分別是B1C1,A1D1,A1B1,BD,B1C的中點,
求證:(1)MN∥平面CDD1C1.
(2)平面EBD∥平面FGA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:PF⊥FD;
(2)判斷并說明PA上是否存在點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com