經(jīng)過正方體ABCD-A1B1C1D1的棱BB1作一平面交平面AA1D1D于E1E.求證:BB1∥E1E.
考點:空間中直線與直線之間的位置關系
專題:空間位置關系與距離
分析:利用正方體的性質,只要證BB1∥平面ADD1A1,結合線面平行的性質可證.
解答: 證明:因為幾何體為正方體,
所以BB1∥平面ADD1A1,
又BB1?平面BB1E1E,平面BB1E1E∩平面ADD1A=EE1
所以BB1∥EE1
點評:本題考查了正方體中的線線平行的判定,關鍵是正確利用正方體的性質得到BB1∥平面ADD1A1,再結合線面平行的性質定理可證.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求證:4sinθ(
3
4
-sin2θ)=4sinθ(
3
4
cos2θ-
1
4
sin2θ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知隨機變量ξ~(100,
1
2
),則當P(ξ=k)取得最大值時,k的值為(  )
A、49B、50
C、49或50D、50或51

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知θ為鈍角,且sinθ=
3
2
,則tan
θ
2
=( 。
A、-
3
3
B、
3
3
C、-
3
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.將△ABD沿邊AB折起,使得△ABD與△ABC成30°的二面角D-AB-C,如圖二,在二面角D-AB-C中.
(1)求D、C之間的距離;
(2)求CD與面ABC所成的角的大;
(3)求證:對于AD上任意點H,CH不與面ABD垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
4
-
y2
12
=1上一點P到其左焦點的距離為5,則點P到右焦點的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=2px2的焦點為F,點P(1,
1
4
)在拋物線上,過P作PQ垂直于拋物線的準線,垂足為Q,若拋物線的準線與對稱軸相交于點M,則四邊形PQMF的面積等于多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩相關變量的非線性回歸方程為
?
y
=1.2x2
,則樣本點(1,4)的殘差為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項等比數(shù)列{an}的前n項和為Sn,n∈N*,且S2=6,S6=126.
(1)求數(shù)列{an}的通項公式;
(2)設cn=
1
log
2
anlog
2
an+1
,數(shù)列{cn}的前n項和為Tn,是否存在實數(shù)λ,使不等式nTn+1<λ(n+1)(n+2)對任意的正整數(shù)n都成立?若存在,求出λ的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案