【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n2+n.
(1)求數(shù)列{an}的通項公式an;
(2)數(shù)列{bn}滿足bn= (n∈N*),求數(shù)列{bn}的前n項和Tn .
【答案】
(1)解:∵Sn=n2+n.n=1時,a1=S1=2;
n≥2時,an=Sn﹣Sn﹣1=n2+n﹣[(n﹣1)2+(n﹣1)]=2n,n=1時也成立.
∴an=2n(n∈N*).
(2)解:bn= = = .
∴數(shù)列{bn}的前n項和Tn=
=
=
【解析】(1)Sn=n2+n.n=1時,a1=S1;n≥2時,an=Sn﹣Sn﹣1 . 即可得出.(2)bn= = = .利用“裂項求和”方法即可得出.
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點.
(1)求證:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x+a2﹣x , 其中常數(shù)a≠0.
(1)當a=1時,f(x)的最小值;
(2)當a=256時,是否存在實數(shù)k∈(1,2],使得不等式f(k﹣cosx)≥f(k2﹣cos2x)對任意x∈R恒成立?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從甲、乙兩名運動員的若干次訓練成績中隨機抽取6次,分別為
甲:7.7,7.8,8.1,8.6,9.3,9.5
乙:7.6,8.0,8.2,8.5,9.2,9.5
(1)根據(jù)以上的莖葉圖,不用計算說一下甲乙誰的方差大,并說明誰的成績穩(wěn)定;
(2)從甲、乙運動員高于8.1分成績中各隨機抽取1次成績,求甲、乙運動員的成績至少有一個高于9.2分的概率.
(3)經(jīng)過對甲、乙運動員若干次成績進行統(tǒng)計,發(fā)現(xiàn)甲運動員成績均勻分布在[7.5,9.5]之間,乙運動員成績均勻分布在[7.0,10]之間,現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于0.5分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個總體中的100個個體的編號分別為0,1,2,3,…,99,依次將其分成10個小段,段號分別為0,1,2,…,9.現(xiàn)要用系統(tǒng)抽樣的方法抽取一個容量為10的樣本,規(guī)定如果在第0段隨機抽取的號碼為i,那么依次錯位地取出后面各段的號碼,即第k段中所抽取的號碼的個位數(shù)為i+k或i+k-10(i+k≥10),則當i=7時,所抽取的第6個號碼是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣xcosx.
(1)討論f(x)在(0,2π)上的單調(diào)性;
(2)若關(guān)于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有兩個根,求實數(shù)m的取值范圍.
(3)求證:當x∈(0, )時,f(x)< x3 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.
附注:
參考數(shù)據(jù):,,
,≈2.646.
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體, , ,且兩兩垂直.給出下列四個命題:
①三棱錐的體積為定值;
②經(jīng)過四點的球的直徑為;
③直線∥平面;
④直線所成的角為;
其中真命題的個數(shù)是(。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com