(本題滿分14分) 設函數(shù)f (x)=ln x+在(0,) 內(nèi)有極值.
(Ⅰ) 求實數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求證:f (x2)-f (x1)>e+2-.
注:e是自然對數(shù)的底數(shù).
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)已知是定義在上的奇函數(shù),當時,
(1)求的解析式;
(2)是否存在負實數(shù),使得當的最小值是4?如果存在,求出的值;如果不存在,請說明理由。
(3)對如果函數(shù)的圖像在函數(shù)的圖像的下方,則稱函數(shù)在D上被函數(shù)覆蓋。求證:若時,函數(shù)在區(qū)間上被函數(shù)覆蓋。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),(1)若函數(shù)在處與直線相切;
(1) ①求實數(shù)的值; ②求函數(shù)上的最大值;
(2)當時,若不等式對所有的都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題15分)已知函數(shù)是奇函數(shù),且圖像在點 為自然對數(shù)的底數(shù))處的切線斜率為3.
(1) 求實數(shù)、的值;
(2) 若,且對任意恒成立,求的最大值;
(3) 當時,證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
設函數(shù)()若上是增函數(shù),在(0,1)上是減函數(shù),函數(shù)在R上有三個零點,且1是其中一個零點。
(1)求b的值;
(2)求最小值的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)給定函數(shù)
(1)試求函數(shù)的單調(diào)減區(qū)間;
(2)已知各項均為負的數(shù)列滿足,求證:;
(3)設,為數(shù)列的前項和,求證:。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知f (x)=ax-ln(-x),x∈(-e,0),g(x)=-,其中e是自然常數(shù),a∈R.
(1)討論a=-1時, f (x)的單調(diào)性、極值;
(2)求證:在(1)的條件下,|f (x)|>g(x)+1/2;
(3)是否存在實數(shù)a,使f (x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com