分析 (1)由已知式子結(jié)合三角形的面積公式和余弦定理以及同角三角函數(shù)基本關(guān)系可解得cosA,進(jìn)而可得sinA和tanA;
(2)由(1)和二倍角公式可得cos$\frac{A}{2}$,由正弦定理以及和差化積公式可得△ABC周長(zhǎng)=1+$\frac{7sinB}{4\sqrt{3}}$+$\frac{7sinC}{4\sqrt{3}}$=1+$\frac{\sqrt{21}}{3}$cos$\frac{B-C}{2}$,由三角函數(shù)值域可得.
解答 解:(1)∵在△ABC中2$\sqrt{3}$S=a2-(b-c)2,
∴2$\sqrt{3}$•$\frac{1}{2}$bcsinA=a2-b2-c2+2bc=-2bccosA+2bc
∴$\sqrt{3}$sinA=-2cosA+2,即sinA=$\frac{2}{\sqrt{3}}$(1-cosA)
由sin2A+cos2A=1可得$\frac{4}{3}$(1-cosA)2+cos2A=1,
整理可得7cos2A-8cosA+1=0即(cosA-1)(7cosA-1)=0,
解得cosA=$\frac{1}{7}$,或cosA=1(此時(shí)A=0,不合題意,舍去)
由同角三角函數(shù)基本關(guān)系可得sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4\sqrt{3}}{7}$,
∴tanA=$\frac{sinA}{cosA}$=4$\sqrt{3}$;
(2)由(1)可得sinA=$\frac{4\sqrt{3}}{7}$,cosA=$\frac{1}{7}$,
∴2cos2$\frac{A}{2}$-1=$\frac{1}{7}$,解方程舍去負(fù)值可得cos$\frac{A}{2}$=$\frac{2\sqrt{7}}{7}$,
結(jié)合a=1和正弦定理可得b=$\frac{7sinB}{4\sqrt{3}}$,c=$\frac{7sinC}{4\sqrt{3}}$,
∴△ABC周長(zhǎng)=1+$\frac{7sinB}{4\sqrt{3}}$+$\frac{7sinC}{4\sqrt{3}}$=1+$\frac{7}{4\sqrt{3}}$(sinB+sinC)
=1+$\frac{7}{4\sqrt{3}}$•2sin$\frac{B+C}{2}$cos$\frac{B-C}{2}$=1+$\frac{7}{4\sqrt{3}}$•2cos$\frac{A}{2}$cos$\frac{B-C}{2}$
=1+$\frac{\sqrt{21}}{3}$cos$\frac{B-C}{2}$≤1+$\frac{\sqrt{21}}{3}$,當(dāng)且僅當(dāng)B=C時(shí)取等號(hào).
故△ABC周長(zhǎng)的最大值為1+$\frac{\sqrt{21}}{3}$
點(diǎn)評(píng) 本題考查正余弦定理解三角形,涉及三角形的面積公式以及和差化積公式,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{y^2}{8}-\frac{x^2}{6}=1$ | B. | $\frac{x^2}{6}-\frac{y^2}{8}=1$ | C. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | D. | $\frac{y^2}{9}-\frac{x^2}{16}=1$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com