6.設(shè)函數(shù)f(x)=ax5+bx3+cx+1,且f(-2)=3,f(2)的值為-1.

分析 由題意可得F(x)=f(x)-1為奇函數(shù),再根據(jù)f(-2)=3,求得f(2)的值.

解答 解:∵函數(shù)f(x)=ax5+bx3+cx+1,
∴F(x)=f(x)-1為奇函數(shù).
∵f(-2)=3,
∴F(-2)=f(-2)-1=2,
∴F(2)=-2=f(2)-1,
∴f(2)=-2+1=-1,
故答案為:-1.

點(diǎn)評 本題主要考查利用函數(shù)的奇偶性求函數(shù)的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在復(fù)平面上復(fù)數(shù)-3-2i,-4+5i,2+i所對應(yīng)的點(diǎn)分別是A、B、C,則平行四邊形ABCD的對角線BD所對應(yīng)的復(fù)數(shù)是7-11i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標(biāo)有點(diǎn)數(shù)1,2,3,4,5,6),骰子朝上的面的點(diǎn)數(shù)分別為x,y,則log3(x+2y)=2的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)A(1,2)在拋物線C:y2=2px上,過點(diǎn)A作兩條直線分別交拋物線于點(diǎn)D、E,直線AD,AE的斜率分別為kAD,kAE
(1)求拋物線C的方程;
(2)若直線DE經(jīng)過點(diǎn)(-1,-2),求KAD•KAE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過橢圓$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1的左焦點(diǎn),且與長軸垂直的弦的端點(diǎn)坐標(biāo)為$(-\sqrt{5},±\frac{4}{3})$,,弦長為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a∈R,則“a>b”是“a3>b3”(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列哪個點(diǎn)在函數(shù)y=2+$\frac{1}{x}$的圖象上( 。
A.(0,0)B.(1,3)C.(2,4)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.將a,b,c,d四人排成一行,其中a不排第一,b不排第二,c不排第三,d不排第四的不同排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,其面積為S,且2$\sqrt{3}$S=a2-(b-c)2
(1)求tanA;
(2)若a=1,求△ABC周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案