3.已知等差數(shù)列{an},a11=103,a29=-53,求S39和a20

分析 根據(jù)等差數(shù)列的性質(zhì)可得2a20=a11+a29,再根據(jù)前n項和公式計算即可.

解答 解:∵a11=103,a29=-53,
∴2a20=a11+a29=50,
∴a20=25,
∴S39=$\frac{39({a}_{1}+{a}_{39})}{2}$=39a20=39×25=1005

點評 本題考查等差數(shù)列的性質(zhì)和前n項和公式,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是等比數(shù)列,Sn為數(shù)列{an}的前n項和,且a3=3,S3=9
(1)求數(shù)列{an}的通項公式.
(2)設(shè)bn=log2$\frac{3}{{a}_{2n+3}}$,且{bn}為遞增數(shù)列.若cn=$\frac{8}{_{n}_{n+1}}$,求證:c1+c2+…+cn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$不平行,向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$+2$\overrightarrow$平行,則實數(shù)λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題中:
①若a∈R,則(a+1)i是純虛數(shù);
②若a,b∈R且a>b,則a+i3>b+i2;
③若(x2-1)+(x2+3x+2)i是純虛數(shù),則實數(shù)x=±1;
④兩個虛數(shù)不能比較大。
其中,正確命題的序號是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,直線l過點$P(1,\sqrt{3})$和M(2,0),直線l與曲線C:y2=4x交于A,B兩點.
(1)寫出直線l的參數(shù)方程;
(2)求$\frac{1}{{|{MA}|}}+\frac{1}{{|{MB}|}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.F1,F(xiàn)2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的兩個焦點,P為橢圓上一點,如果△PF1F2的面積為3,tan∠PF1F2=$\frac{1}{3},tan∠P{F_2}{F_1}$=-3,則a=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.側(cè)面都是直角三角形的正三棱錐,底面邊長為2,則此棱錐的全面積是(  )
A.$3+\sqrt{3}$B.$6+2\sqrt{3}$C.$6+\sqrt{3}$D.$3+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,坐標(biāo)紙上的每個單元格的邊長為1,由下往上的六個點:1,2,3,4,5,6的橫、縱坐標(biāo)分別對應(yīng)數(shù)列{an}(n∈N*)的前12項(即橫坐標(biāo)為奇數(shù)項,縱坐標(biāo)為偶數(shù)項),按如此規(guī)律下去,則a2009+a2010+a2011等于( 。
A.2 011B.1 006C.1 005D.1 003

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.放煙花是逢年過節(jié)一種傳統(tǒng)慶祝節(jié)日的方式.已知一種煙花模型的三視圖如圖中的粗實線所示,網(wǎng)格紙上小正方形的邊長為1,則該煙花模型的表面積為(
A.$(18+\sqrt{3})π$B.$(21+\sqrt{3})π$C.$(18+\sqrt{5})π$D.$(21+\sqrt{5})π$

查看答案和解析>>

同步練習(xí)冊答案