10.4名男生和4名女生各自平均分成兩組到4所不同的學校去學習,則有不同的分配方案共288種(用數(shù)字作答)

分析 分別求出男生和女生分組的方法,再求出分配的方法,根據(jù)分步計數(shù)原理可得.

解答 解:4個男生有C42=6種分法,4個女生也是C42=6種分法.總共有12個組別,4組去4所不同的學校有A44=24種分法,
根據(jù)分步計數(shù)原理,共有12×24=288種,
故答案為:288

點評 本題考查了分步計數(shù)原理,以及分組分配問題,關(guān)鍵是掌握分組的方法,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.雙曲線C:$\frac{x^2}{3}-{y^2}$=1的漸近線方程是$y=±\frac{{\sqrt{3}}}{3}x$;若拋物線y2=2px(p>0)的焦點與雙曲線C的一個焦點重合,則p=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某工人生產(chǎn)合格零件的產(chǎn)量逐月增長,前5個月的產(chǎn)量如表所示:
月份x12345
合格零件y(件)50607080100
(1)若從這5組數(shù)據(jù)中抽出兩組,求抽出的2組數(shù)據(jù)恰好是相鄰的兩個月數(shù)據(jù)的概率;
(2)請根據(jù)所給5組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=b$\stackrel{∧}{x}$+a;并根據(jù)線性回歸方程預測該工人第6個月生產(chǎn)的合格零件的件數(shù).
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),…(xn,yn)其回歸線y=bx+a的斜率和截距的最小二乘估計分別為:$b=\frac{{\sum_{i=1}^n{{X_i}{Y_i}}-n\overline{x•}\overline y}}{{\sum_{i=1}^n{X_i^2}-n{{\overline x}^2}}},a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.兩個隨機變量x,y的取值表為
x0134
y2.24.34.86.7
若x,y具有線性相關(guān)關(guān)系,且$\stackrel{∧}{y}$=$\stackrel{∧}$x+2.6,則下列四個結(jié)論錯誤的是( 。
A.x與y是正相關(guān)
B.當x=6時,y的估計值為8.3
C.x每增加一個單位,y增加0.95個單位
D.樣本點(3,4.8)的殘差為0.56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若雙曲線x2-$\frac{y^2}{b^2}$=1的一個焦點到其漸近線的距離為2$\sqrt{2}$,則該雙曲線的焦距等于6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐S-ABCD中,底面ABCD是平行四邊形,平面ABS⊥平面CBS,側(cè)面SBC是正三角形,AB=AS,點E是SB的中點.
(1)證明:SD∥平面ACE;
(2)證明:BS⊥AC;
(3)若AB⊥AS,BC=2,求三棱錐S-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.一個袋子中有形狀大小完全相同的3個黑球和4個白球.
(1)從中任意摸出一球,用0表示摸出黑球,用1表示摸出白球,即X=$\left\{\begin{array}{l}{0,摸出黑球}\\{1,摸出白球}\end{array}\right.$,求X的分布列.
(2)從中任意摸出兩個球,用“ξ=0”表示兩個球全是黑球,用“ξ=1”兩個球不全是黑球,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x),g(x)是定義在R上的兩個函數(shù),且對?x1,x2∈R,|f(x1)-f(x2)|≥|g(x1)-g(x2)|恒成立,命題P1:若f(x)為偶函數(shù),則g(x)也為偶函數(shù);命題P2:若x≠0時,x•f′(x)>0在R上恒成立,則f(x)+g(x)為R上的單調(diào)函數(shù),則下列命題正確的是( 。
A.P1∧(¬P2B.(¬P1)∧P2C.(¬P1)∧¬P2D.P1∧P2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.解下列指數(shù)方程.
(1)($\frac{1}{32}$)x=81-x;
(2)9x=42x+1;
(3)9x+6x=22x+1

查看答案和解析>>

同步練習冊答案