1.某工人生產(chǎn)合格零件的產(chǎn)量逐月增長(zhǎng),前5個(gè)月的產(chǎn)量如表所示:
月份x12345
合格零件y(件)50607080100
(1)若從這5組數(shù)據(jù)中抽出兩組,求抽出的2組數(shù)據(jù)恰好是相鄰的兩個(gè)月數(shù)據(jù)的概率;
(2)請(qǐng)根據(jù)所給5組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=b$\stackrel{∧}{x}$+a;并根據(jù)線性回歸方程預(yù)測(cè)該工人第6個(gè)月生產(chǎn)的合格零件的件數(shù).
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…(xn,yn)其回歸線y=bx+a的斜率和截距的最小二乘估計(jì)分別為:$b=\frac{{\sum_{i=1}^n{{X_i}{Y_i}}-n\overline{x•}\overline y}}{{\sum_{i=1}^n{X_i^2}-n{{\overline x}^2}}},a=\overline y-b\overline x$.

分析 (1)根據(jù)古典概型的概率公式進(jìn)行計(jì)算即可.
(2)根據(jù)回歸方程求出對(duì)應(yīng)的回歸系數(shù)進(jìn)行估計(jì)即可.

解答 解:(1)由題意知本題是一個(gè)古典概型,設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件A試驗(yàn)發(fā)生包含的事件是從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有C52=10種情況,每種情況都是等
可能出現(xiàn)的其中,滿足條件的事件是抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有4種
∴P(A)=$\frac{4}{10}$=$\frac{2}{5}$;  (4分)
(2)由數(shù)據(jù)求得$\overline{x}$=3,$\overline{y}$=72,$\sum_{i=1}^{5}$xiyi=1200,$\sum_{i=1}^{5}$xi2=55,
故$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{1200-5×3×72}{55-5×3×3}$=12,
∴$\widehat{a}$=$\overline{y}-\widehat\overline{x}$=36,
∴y關(guān)于x的線性回歸方程為$\widehat{y}$=12x+36,(10分)
當(dāng)x=6,$\widehat{y}$=108(件),即預(yù)測(cè)該工人第6個(gè)月生產(chǎn)的合格零件的件數(shù)為108件.(12分)

點(diǎn)評(píng) 本題主要考查線線性回歸的應(yīng)用,考查學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.聯(lián)考過(guò)后,夷陵中學(xué)要籌備高二期中考試分析會(huì),要安排七校七個(gè)高二年級(jí)主任發(fā)言,其中襄陽(yáng)五中與鐘祥一中的主任安排在夷陵中學(xué)主任后面發(fā)言,則可安排不同的發(fā)言順序共有1680(用數(shù)字作答)種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.將3本不同的數(shù)學(xué)書(shū)和2本不同的語(yǔ)文書(shū)在書(shū)架上排成一行,若2本語(yǔ)文書(shū)相鄰排放,則不同的排放方案共有48種(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.己知復(fù)數(shù)z=(2-i)m2-$\frac{6m}{1-i}$-2(1+i),當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是:
(1)虛數(shù);
(2)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過(guò)F1作傾斜角為45°的直線交雙曲線右支于M點(diǎn),若MF2垂直x軸,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),以C的右焦點(diǎn)F(c,0)為圓心,以a為半徑的圓與C的一條漸近線交于A,B兩點(diǎn),若|AB|=$\frac{2}{3}$c,則雙曲線C的離心率為( 。
A.$\frac{{3\sqrt{26}}}{13}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線x2-3y2=-1的兩條漸近線的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.4名男生和4名女生各自平均分成兩組到4所不同的學(xué)校去學(xué)習(xí),則有不同的分配方案共288種(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖所示,在棱長(zhǎng)為2的正方體ABCD-A′B′C′D′中,求:
(1)二面角B-A′D′-D的平面角的正切值;
(2)三棱錐A′-BB′D′的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案