19.已知f(x),g(x)是定義在R上的兩個函數(shù),且對?x1,x2∈R,|f(x1)-f(x2)|≥|g(x1)-g(x2)|恒成立,命題P1:若f(x)為偶函數(shù),則g(x)也為偶函數(shù);命題P2:若x≠0時,x•f′(x)>0在R上恒成立,則f(x)+g(x)為R上的單調(diào)函數(shù),則下列命題正確的是(  )
A.P1∧(¬P2B.(¬P1)∧P2C.(¬P1)∧¬P2D.P1∧P2

分析 分別求出命題P1、命題P2的真假,從而求出復(fù)合命題的真假即可.

解答 解:令x2=-x1,不等式|f(x1)-f(x2)|≥|g(x1)-g(x2)|恒成立,
∴不等式|f(x1)-f(-x1)|≥|g(x1)-g(-x1)|恒成立,
∵f(x)是偶函數(shù),∴f(-x1)=f(x1),
∴f(x1)-f(-x1)=0,
∴不等式0≥|g(x1)-g(-x1)|恒成立,又|g(x1)-g(-x1)|≥0,
∴g(x1)-g(-x1)=0,∴g(-x1)=g(x1),
∴函數(shù)g(x)是偶函數(shù),故命題命題P1是真命題;
若x≠0時,x•f′(x)>0在R上恒成立,
則f(x)在(-∞,0)遞減,在(0,+∞)遞增,
∵|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,
設(shè)x1<x2,x>0時,
∴f(x1)-f(x2)<g(x1)-g(x2)<f(x2)-f(x1),
∴h(x1)-h(x2)=f(x1)-f(x2)+g(x1)-g(x2)<f(x1)-f(x2)+f(x2)-f(x1),
∴h(x1)-h(x2)<0,
x<0時,h(x1)-h(x2)>0,
∴函數(shù)h(x)=f(x)+g(x)在(-∞,0)遞減,在(0,+∞)上是增函數(shù),
故命題P2是假命題;
故選:A.

點評 本題考查函數(shù)的周期性、奇偶性,考查復(fù)合命題的判斷,考查學(xué)生分析解決問題的能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.己知復(fù)數(shù)z=(2-i)m2-$\frac{6m}{1-i}$-2(1+i),當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是:
(1)虛數(shù);
(2)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.4名男生和4名女生各自平均分成兩組到4所不同的學(xué)校去學(xué)習(xí),則有不同的分配方案共288種(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,在正方體ABCD-A1B1C1D1中,AB=1,點P為BD1上一點,平面α滿足:點P∈平面α,直BD1⊥平面α,設(shè)以B為頂點,以連接平面α與正方體棱的交點為底面的幾何體的體積為V,則V的最大值為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{3}{16}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某中學(xué)學(xué)生社團(tuán)活動迅猛發(fā)展,高一新生中的五名同學(xué)打算參加“清凈了文學(xué)社”、“科技社”、“十年國學(xué)社”、“圍棋苑”四個社團(tuán).若每個社團(tuán)至少有一名同學(xué)參加,每名同學(xué)至少參加一個社團(tuán)且只能參加一個社團(tuán),且同學(xué)甲不參加“圍棋苑”,則不同的參加方法的種數(shù)為( 。
A.72B.108C.180D.216

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD=2,點M、N分別在PD、PC上,2PN=NC,PM=MD
(1)求證:PC⊥平面AMN;
(2)求四面體P-ABN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在棱長為2的正方體ABCD-A′B′C′D′中,求:
(1)二面角B-A′D′-D的平面角的正切值;
(2)三棱錐A′-BB′D′的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)F(x)=$\frac{{3}^{x}cos4x}{{9}^{x}-1}$f(x)(x≠0)是偶函數(shù),且f(x)不恒等于零,則f(x)( 。
A.是奇函數(shù)B.是偶函數(shù)
C.既是奇函數(shù),又是偶函數(shù)D.是非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在8和200之間插入三個數(shù),使它們構(gòu)成等比數(shù)列,求這三個數(shù).

查看答案和解析>>

同步練習(xí)冊答案