13.設(shè)曲線y=eax-ln(x+1)在x=0處的切線方程為2x-y+1=0,則a=(  )
A.0B.1C.2D.3

分析 求出f(x)的導(dǎo)數(shù),可得切線的斜率,再由切線方程,可得a的方程,解方程即可得到a的值.

解答 解:y=eax-ln(x+1)的導(dǎo)數(shù)為y′=aeax-$\frac{1}{x+1}$,
可得在x=0處的切線斜率為k=a-1,
由切線方程為2x-y+1=0,可得a-1=2,
解得a=3.
故選:D.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查直線方程的運(yùn)用,正確求導(dǎo)和運(yùn)用導(dǎo)數(shù)的幾何意義是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如表1:
年份x20112012201320142015
儲(chǔ)蓄存款y(千億元)567810
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,t=x-2010,z=y-5得到下表2:
時(shí)間代號(hào)t12345
z01235
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線性回歸方程$\hat y=\hat bx+\hat a$,其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在[-3,3]上隨機(jī)地取一個(gè)數(shù)b,則事件“直線y=x+b與圓x2+y2-2y-1=0有公共點(diǎn)”發(fā)生的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={-2,0,2},B={x|x2+x-2=0},則A∩B=(  )
A.B.{2}C.{0}D.{-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.$sin\frac{35π}{6}+cos(-\frac{11π}{3})$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)$y=sin(2x-\frac{π}{6})$圖象的一條對(duì)稱軸方程是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)是1,在其上用粗線畫(huà)出了某空間幾何體的三視圖,則這個(gè)空間幾何體的體積為(  )
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若f(x)是定義在R上的函數(shù),對(duì)任意的實(shí)數(shù)x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(1)=4,則f(2017)的值為2020.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的表面積為(  )
A.$\frac{8}{3}$+2πB.4+4$\sqrt{2}$+3πC.8+4$\sqrt{2}$+3πD.10+4$\sqrt{2}$+2π

查看答案和解析>>

同步練習(xí)冊(cè)答案