分析 根據(jù)f(x+2)≥f(x)+2可得f(x+4)≥f(x)+4,而f(x+4)≤f(x)+4可得f(x+4)=f(x)+4,然后根據(jù)遞推關(guān)系可求出所求.
解答 解:∵f(x+2)≥f(x)+2
∴f(x+4)≥f(x+2)+2≥f(x)+4
而f(x+4)≤f(x)+4
∴f(x+4)=f(x)+4
∴f(2017)=f(2013)+4
=…
=f(1)+4×504
而f(1)=4
則f(2009)=4+4×504=2020,
故答案為2020.
點評 本題主要考查了抽象函數(shù)及其應用,解題的關(guān)鍵是求出f(x+4)=f(x)+4,同時考查了計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 如果不買彩票,那么就不能中獎,因為你買了彩票,所以你一定中獎 | |
B. | 因為a>b,a>c,所以a-b>a-c | |
C. | 若a,b均為正實數(shù),則lga+lgb≥2$\sqrt{lga•lgb}$ | |
D. | 若ab<0,則$\frac{a}$+$\frac{a}$=-[(-$\frac{a}$)+(-$\frac{a}$)]≤-2$\sqrt{(-\frac{a})(-\frac{a})}$≤-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com