17.已知函數(shù)f(x)的定義域為R,直線x=1和x=2都是曲線y=f(x)的對稱軸,且f(0)=1.則f(4)+f(10)=2.

分析 根據(jù)題意和函數(shù)對稱性的性質求出函數(shù)的周期,由周期性可求出f(4)、f(10),代入式子求出答案.

解答 解:因為直線x=1和x=2都是曲線y=f(x)的對稱軸,
所以f(2-x)=f(x),f(4-x)=f(x),
則f(2-x)=f(4-x),即f(x+2)=f(x+4),
令x取x-2代入得,f(x)=f(x+2),
所以函數(shù)f(x)的最小正周期是2,
又f(0)=1,則f(4)=f(10)=f(0)=1,
所以f(4)+f(10)=2,
故答案為:2.

點評 本題考查函數(shù)的對稱性、周期性的靈活應用,牢記有關的結論是解題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求1734,816,1343的最大公約數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{3}$sinx($\frac{π}{2}$-x)sinx-cos2x.
(1)求函數(shù)f(x)的單詞遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=$\frac{1}{2}$,△ABC的面積為$\frac{\sqrt{3}}{4}$,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)的定義域為R,直線x=1和x=2都是曲線y=f(x)的對稱軸,且f(0)=1,則f(4)+(10)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{2}$x2+alnx(x∈R,a≠0),求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知正數(shù)x,y滿足x+4y=4,則$\frac{x+28y+4}{xy}$的最小值為(  )
A.$\frac{85}{2}$B.24C.20D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+$\frac{a}{x}$(a≠0),試探究函數(shù)f(x)的極值情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知正三角形ABC的邊長為1,求:
(1)$\overrightarrow{AB}$$•\overrightarrow{AC}$
(2)$\overrightarrow{AB}$$•\overrightarrow{BC}$
(3)$\overrightarrow{BC}$$•\overrightarrow{AC}$.

查看答案和解析>>

同步練習冊答案