【題目】已知函數(shù)f(x)=e|x| , 將函數(shù)f(x)的圖象向右平移3個單位后,再向上平移2個單位,得到函數(shù)g(x)的圖象,函數(shù)h(x)= 若對于任意的x∈[3,λ](λ>3),都有h(x)≥g(x),則實數(shù)λ的最大值為

【答案】ln2+4
【解析】解:由f(x)=e|x|的圖象向右平移3個單位后可得:e|x﹣3|,再向上平移2個單位,可得e|x﹣3|+2=g(x).

當x∈[3,λ](λ>3)時,g(x)時,增函數(shù),

∴g(x)max=g(λ)=eλ﹣3+2.

函數(shù)h(x)=

當x∈[3,5]時,h(x)=e(x﹣1)+2是增函數(shù),此時:5≥λ>3;

那么:h(x)min=h(3)=2e+2.

則eλ﹣3+2≤2e+2.

解得:λ≤ln2+4

∵5≥λ>3;

∴實數(shù)λ的最大值為ln2+4.

當x∈(5,﹣∞)時,h(x)=4e6﹣x+2是減函數(shù),此時:5<λ;

那么:2<h(x)<4e+2.

則eλ﹣3+2≤2.

解得:λ∈Φ,

綜上可得:實數(shù)λ的最大值為ln2+4.

【考點精析】根據(jù)題目的已知條件,利用指數(shù)函數(shù)的單調(diào)性與特殊點的相關(guān)知識可以得到問題的答案,需要掌握0<a<1時:在定義域上是單調(diào)減函數(shù);a>1時:在定義域上是單調(diào)增函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在R上的奇函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(1﹣t),且x 時,f(x)=﹣x2 , 則f(3)+f(﹣ 的值等于( 。
A.﹣
B.﹣
C.﹣
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點M(1,4),且在x=﹣2取得極值.
( I)求實數(shù)a,b的值;
( II)若函數(shù)f(x)在區(qū)間(m,m+1)上不單調(diào),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 滿足Sn=2an﹣1,n∈N*.數(shù)列{bn}滿足nbn+1﹣(n+1)bn=n(n+1),n∈N*,且b1=1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若cn=an ,數(shù)列{cn}的前n項和為Tn , 對任意的n∈N*,都有Tn<nSn﹣a,求實數(shù)a的取值范圍;
(3)是否存在正整數(shù)m,n使b1 , am , bn(n>1)成等差數(shù)列,若存在,求出所有滿足條件的m,n,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且tanA﹣tanB= (1+tanAtanB).
(Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大。
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風(fēng)景區(qū)的一段邊界為曲線C.為方便游客光,擬過曲線C上的某點分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價分別為5萬元/百米,40萬元/百米,建立如圖所示的直角坐標系xoy,則曲線符合函數(shù)y=x+ (1≤x≤9)模型,設(shè)PM=x,修建兩條道路PM,PN的總造價為f(x)萬元,題中所涉及的長度單位均為百米.

(1)求f(x)解析式;
(2)當x為多少時,總造價f(x)最低?并求出最低造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,過橢圓C: 的左頂點A作直線l,與橢圓C和y軸正半軸分別交于點P,Q.

(1)若AP=PQ,求直線l的斜率;
(2)過原點O作直線l的平行線,與橢圓C交于點M,N,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示,f(x)的圖象與x軸切于N點,則下列選項判斷錯誤的是( )

A.
B.
C.
D.|MN|=π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個關(guān)于圓錐曲線的命題中:
①雙曲線 與橢圓 有相同的焦點;
②以拋物線的焦點弦(過焦點的直線截拋物線所得的線段)為直徑的圓與拋物線的準線是相切的;
③設(shè)A,B為兩個定點,k為常數(shù),若|PA|﹣|PB|=k,則動點P的軌跡為雙曲線;
④過定圓C上一點A作圓的動弦AB,O為原點,若 則動點P的軌跡為橢圓.其中正確的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案