【題目】以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線 與橢圓 有相同的焦點(diǎn);
②以拋物線的焦點(diǎn)弦(過焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
③設(shè)A,B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|﹣|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若 則動(dòng)點(diǎn)P的軌跡為橢圓.其中正確的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】B
【解析】解:①雙曲線 的焦點(diǎn)坐標(biāo)為(±5,0),橢圓 的焦點(diǎn)坐標(biāo)為(±5,0),所以雙曲線 與橢圓 有相同的焦點(diǎn),正確;②不妨設(shè)拋物線為標(biāo)準(zhǔn)拋物線:y2=2px (p>0 ),即拋物線位于Y軸的右側(cè),以X軸為對(duì)稱軸.設(shè)過焦點(diǎn)的弦為PQ,PQ的中點(diǎn)是M,M到準(zhǔn)線的距離是d.而P到準(zhǔn)線的距離d1=|PF|,Q到準(zhǔn)線的距離d2=|QF|.又M到準(zhǔn)線的距離d是梯形的中位線,故有d= ,由拋物線的定義可得: = =半徑.所以圓心M到準(zhǔn)線的距離等于半徑,所以圓與準(zhǔn)線是相切,正確.③平面內(nèi)與兩個(gè)定點(diǎn)F1 , F2的距離的差的絕對(duì)值等于常數(shù)k(k<|F1F2|)的點(diǎn)的軌跡叫做雙曲線,當(dāng)0<k<|AB|時(shí)是雙曲線的一支,當(dāng)k=|AB|時(shí),表示射線,所以不正確;④設(shè)定圓C的方程為x2+y2+Dx+Ey+F=0,點(diǎn)A(m,n),P(x,y),由 則可知P為AB的中點(diǎn),則B(2x﹣m,2y﹣n),因?yàn)锳B為圓的動(dòng)弦,所以B在已知圓上,把B的坐標(biāo)代入圓x2+y2+Dx+Ey+F=0得到P的軌跡仍為圓,當(dāng)B與A重合時(shí)AB不是弦,所以點(diǎn)A除外,所以不正確.故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若,且有兩個(gè)極值點(diǎn), (),求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,點(diǎn)E是PC的中點(diǎn),連接DE,BD,BE.
(1)證明:DE⊥平面PBC.
(2)試判斷四面體EBCD是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,請(qǐng)說明理由;
(3)記陽馬P﹣ABCD的體積為V1 , 四面體EBCD的體積為V2 , 求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,則下列結(jié)論中正確的是( )
A. 將函數(shù)的圖象向左平移個(gè)單位后得到函數(shù)的圖象
B. 函數(shù)圖象關(guān)于點(diǎn)中心對(duì)稱
C. 函數(shù)的圖象關(guān)于對(duì)稱
D. 函數(shù)在區(qū)間內(nèi)單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AP:(x﹣a)2+(y﹣b)2=r2(r>0)被y軸所截的弦長為2,被x軸分成兩段弧,且弧長之比等于 (其中P(a,b)為圓心,O為坐標(biāo)原點(diǎn)).
(1)求a,b所滿足的關(guān)系式;
(2)點(diǎn)P在直線x﹣2y=0上的投影為A,求事件“在圓P內(nèi)隨機(jī)地投入一點(diǎn),使這一點(diǎn)恰好在△POA內(nèi)”的概率的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(1,2),B(﹣1,2),動(dòng)點(diǎn)P滿足 ,若雙曲線 =1(a>0,b>0)的漸近線與動(dòng)點(diǎn)P的軌跡沒有公共點(diǎn),則雙曲線離心率的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線由上半橢圓: (, )和部分拋物線: ()連接而成, 與的公共點(diǎn)為, ,其中的離心率為.
(1)求, 的值;
(2)過點(diǎn)的直線與, 分別交于點(diǎn), (均異于點(diǎn), ),是否存在直線,使得以為直徑的圓恰好過點(diǎn),若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com