分析 先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再看f(-x)與f(x)的關(guān)系,再根據(jù)函數(shù)的奇偶性的定義作出判斷.
解答 解:函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$的定義域?yàn)镽,且滿足f(-x)=$\frac{{e}^{-x}{-e}^{x}}{2}$=-f(x),
故該函數(shù)為奇函數(shù),
故答案為:奇函數(shù).
點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的判斷,先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再看f(-x)與f(x)的關(guān)系,再根據(jù)函數(shù)的奇偶性的定義作出判斷,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{π}{12}$ | B. | x=-$\frac{π}{12}$ | C. | x=$\frac{π}{6}$ | D. | x=-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{13}}}{5}$ | B. | $\frac{{\sqrt{7}}}{2}$ | C. | $\frac{{2\sqrt{39}}}{9}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com